These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34676106)

  • 1. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atom-specific persistent homology and its application to protein flexibility analysis.
    Bramer D; Wei GW
    Comput Math Biophys; 2020 Jan; 8(1):1-35. PubMed ID: 34278230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties.
    Xie T; Grossman JC
    Phys Rev Lett; 2018 Apr; 120(14):145301. PubMed ID: 29694125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DART: deep learning enabled topological interaction model for energy prediction of metal clusters and its application in identifying unique low energy isomers.
    Modee R; Agarwal S; Verma A; Joshi K; Priyakumar UD
    Phys Chem Chem Phys; 2021 Oct; 23(38):21995-22003. PubMed ID: 34569568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent Cohomology for Data With Multicomponent Heterogeneous Information.
    Cang Z; Wei GW
    SIAM J Math Data Sci; 2020; 2(2):396-418. PubMed ID: 34222831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.
    Jalem R; Nakayama M; Noda Y; Le T; Takeuchi I; Tateyama Y; Yamazaki H
    Sci Technol Adv Mater; 2018; 19(1):231-242. PubMed ID: 29707064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2024 Oct; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VASE: A High-Entropy Alloy Short-Range Order Structural Descriptor for Machine Learning.
    Liu J; Wang P; Luan J; Chen J; Cai P; Chen J; Lu X; Fan Y; Yu Z; Chou K
    J Chem Theory Comput; 2024 Dec; 20(24):11082-11092. PubMed ID: 39046791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning.
    Jha D; Choudhary K; Tavazza F; Liao WK; Choudhary A; Campbell C; Agrawal A
    Nat Commun; 2019 Nov; 10(1):5316. PubMed ID: 31757948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology-Based Machine Learning Strategy for Cluster Structure Prediction.
    Chen X; Chen D; Weng M; Jiang Y; Wei GW; Pan F
    J Phys Chem Lett; 2020 Jun; 11(11):4392-4401. PubMed ID: 32320253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of New Inorganic Crystals with the Desired Composition Using Deep Learning.
    Han S; Lee J; Han S; Moosavi SM; Kim J; Park C
    J Chem Inf Model; 2023 Sep; 63(18):5755-5763. PubMed ID: 37683188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving deep learning model performance under parametric constraints for materials informatics applications.
    Gupta V; Peltekian A; Liao WK; Choudhary A; Agrawal A
    Sci Rep; 2023 Jun; 13(1):9128. PubMed ID: 37277456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation.
    Wang M; Cang Z; Wei GW
    Nat Mach Intell; 2020; 2(2):116-123. PubMed ID: 34170981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks.
    Krishnapriyan AS; Montoya J; Haranczyk M; Hummelshøj J; Morozov D
    Sci Rep; 2021 Apr; 11(1):8888. PubMed ID: 33903606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular Topology: Modelling and Analysis.
    Liu J; Xia KL; Wu J; Yau SS; Wei GW
    Acta Math Sin Engl Ser; 2022; 38(10):1901-1938. PubMed ID: 36407804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.