BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34676106)

  • 1. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atom-specific persistent homology and its application to protein flexibility analysis.
    Bramer D; Wei GW
    Comput Math Biophys; 2020 Jan; 8(1):1-35. PubMed ID: 34278230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties.
    Xie T; Grossman JC
    Phys Rev Lett; 2018 Apr; 120(14):145301. PubMed ID: 29694125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DART: deep learning enabled topological interaction model for energy prediction of metal clusters and its application in identifying unique low energy isomers.
    Modee R; Agarwal S; Verma A; Joshi K; Priyakumar UD
    Phys Chem Chem Phys; 2021 Oct; 23(38):21995-22003. PubMed ID: 34569568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent Cohomology for Data With Multicomponent Heterogeneous Information.
    Cang Z; Wei GW
    SIAM J Math Data Sci; 2020; 2(2):396-418. PubMed ID: 34222831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.
    Jalem R; Nakayama M; Noda Y; Le T; Takeuchi I; Tateyama Y; Yamazaki H
    Sci Technol Adv Mater; 2018; 19(1):231-242. PubMed ID: 29707064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning.
    Jha D; Choudhary K; Tavazza F; Liao WK; Choudhary A; Campbell C; Agrawal A
    Nat Commun; 2019 Nov; 10(1):5316. PubMed ID: 31757948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology-Based Machine Learning Strategy for Cluster Structure Prediction.
    Chen X; Chen D; Weng M; Jiang Y; Wei GW; Pan F
    J Phys Chem Lett; 2020 Jun; 11(11):4392-4401. PubMed ID: 32320253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of New Inorganic Crystals with the Desired Composition Using Deep Learning.
    Han S; Lee J; Han S; Moosavi SM; Kim J; Park C
    J Chem Inf Model; 2023 Sep; 63(18):5755-5763. PubMed ID: 37683188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving deep learning model performance under parametric constraints for materials informatics applications.
    Gupta V; Peltekian A; Liao WK; Choudhary A; Agrawal A
    Sci Rep; 2023 Jun; 13(1):9128. PubMed ID: 37277456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOFormer: Self-Supervised Transformer Model for Metal-Organic Framework Property Prediction.
    Cao Z; Magar R; Wang Y; Barati Farimani A
    J Am Chem Soc; 2023 Feb; 145(5):2958-2967. PubMed ID: 36706365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation.
    Wang M; Cang Z; Wei GW
    Nat Mach Intell; 2020; 2(2):116-123. PubMed ID: 34170981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks.
    Krishnapriyan AS; Montoya J; Haranczyk M; Hummelshøj J; Morozov D
    Sci Rep; 2021 Apr; 11(1):8888. PubMed ID: 33903606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular Topology: Modelling and Analysis.
    Liu J; Xia KL; Wu J; Yau SS; Wei GW
    Acta Math Sin Engl Ser; 2022; 38(10):1901-1938. PubMed ID: 36407804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.