These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

814 related articles for article (PubMed ID: 34676125)

  • 1. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients.
    Zhou Y; Fu B; Zheng X; Wang D; Zhao C; Qi Y; Sun R; Tian Z; Xu X; Wei H
    Natl Sci Rev; 2020 Jun; 7(6):998-1002. PubMed ID: 34676125
    [No Abstract]   [Full Text] [Related]  

  • 2. Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19.
    Ma Y; Qiu F; Deng C; Li J; Huang Y; Wu Z; Zhou Y; Zhang Y; Xiong Y; Yao Y; Zhong Y; Qu J; Su J
    Genome Med; 2022 Feb; 14(1):16. PubMed ID: 35172892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokine storm promoting T cell exhaustion in severe COVID-19 revealed by single cell sequencing data analysis.
    Yang M; Lin C; Wang Y; Chen K; Han Y; Zhang H; Li W
    Precis Clin Med; 2022 Jun; 5(2):pbac014. PubMed ID: 35694714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained expression of inflammatory monocytes and activated T cells in COVID-19 patients and recovered convalescent plasma donors.
    Singh R; Hemati H; Bajpai M; Yadav P; Maheshwari A; Kumar S; Agrawal S; Sevak JK; Islam M; Mars JS; Sarin SK; Trehanpati N
    Immun Inflamm Dis; 2021 Dec; 9(4):1279-1290. PubMed ID: 34363351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes.
    Sánchez-Cerrillo I; Landete P; Aldave B; Sánchez-Alonso S; Sánchez-Azofra A; Marcos-Jiménez A; Ávalos E; Alcaraz-Serna A; de Los Santos I; Mateu-Albero T; Esparcia L; López-Sanz C; Martínez-Fleta P; Gabrie L; Del Campo Guerola L; de la Fuente H; Calzada MJ; González-Álvaro I; Alfranca A; Sánchez-Madrid F; Muñoz-Calleja C; Soriano JB; Ancochea J; Martín-Gayo E;
    J Clin Invest; 2020 Dec; 130(12):6290-6300. PubMed ID: 32784290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell transcriptomics identifies pathogenic T-helper 17.1 cells and pro-inflammatory monocytes in immune checkpoint inhibitor-related pneumonitis.
    Franken A; Van Mol P; Vanmassenhove S; Donders E; Schepers R; Van Brussel T; Dooms C; Yserbyt J; De Crem N; Testelmans D; De Wever W; Nackaerts K; Vansteenkiste J; Vos R; Humblet-Baron S; Lambrechts D; Wauters E
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36171010
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Viurcos-Sanabria R; Manjarrez-Reyna AN; Solleiro-Villavicencio H; Rizo-Téllez SA; Méndez-García LA; Viurcos-Sanabria V; González-Sanabria J; Arroyo-Valerio A; Carrillo-Ruíz JD; González-Chávez A; León-Pedroza JI; Flores-Mejía R; Rodríguez-Cortés O; Escobedo G
    Front Immunol; 2022; 13():897995. PubMed ID: 35860236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19.
    Wu Y; Huang X; Sun J; Xie T; Lei Y; Muhammad J; Li X; Zeng X; Zhou F; Qin H; Shao L; Zhang Q
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32669467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral innate and adaptive immune cells during COVID-19: Functional neutrophils, pro-inflammatory monocytes, and half-dead lymphocytes.
    Ekşioğlu-Demiralp E; Alan S; Sili U; Bakan D; Ocak İ; Yürekli R; Alpay N; Görçin S; Yıldız A
    Cytometry B Clin Cytom; 2022 Mar; 102(2):153-167. PubMed ID: 34846101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity.
    Berentschot JC; Drexhage HA; Aynekulu Mersha DG; Wijkhuijs AJM; GeurtsvanKessel CH; Koopmans MPG; Voermans JJC; Hendriks RW; Nagtzaam NMA; de Bie M; Heijenbrok-Kal MH; Bek LM; Ribbers GM; van den Berg-Emons RJG; Aerts JGJV; Dik WA; Hellemons ME
    Front Immunol; 2023; 14():1254899. PubMed ID: 37881427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions.
    Jafarzadeh A; Chauhan P; Saha B; Jafarzadeh S; Nemati M
    Life Sci; 2020 Sep; 257():118102. PubMed ID: 32687918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype.
    Trombetta AC; Farias GB; Gomes AMC; Godinho-Santos A; Rosmaninho P; Conceição CM; Laia J; Santos DF; Almeida ARM; Mota C; Gomes A; Serrano M; Veldhoen M; Sousa AE; Fernandes SM
    Front Immunol; 2021; 12():691725. PubMed ID: 34248984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Surface Expression of Insulin-Degrading Enzyme on Monocytes and Lymphocytes from COVID-19 Patients Both at Diagnosis and after Hospital Discharge.
    González-Casimiro CM; Arribas-Rodríguez E; Fiz-López A; Casas J; Gutiérrez S; Tellería P; Novoa C; Rojo-Rello S; Tamayo E; Orduña A; Dueñas C; Bernardo D; Perdomo G
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphocyte Subset Alteration and Monocyte CD4 Expression Reduction in Patients with Severe COVID-19.
    Kazancioglu S; Yilmaz FM; Bastug A; Sakallı A; Ozbay BO; Buyuktarakci C; Bodur H; Yilmaz G
    Viral Immunol; 2021 Jun; 34(5):342-351. PubMed ID: 33264073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients with Severe COVID-19.
    Yang Q; Wen Y; Qi F; Gao X; Chen W; Xu G; Wei C; Wang H; Tang X; Lin J; Zhao J; Zhang M; Zhang S; Zhang Z
    J Immunol; 2021 Oct; 207(7):1848-1856. PubMed ID: 34452933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19?
    Panigrahy D; Gilligan MM; Huang S; Gartung A; Cortés-Puch I; Sime PJ; Phipps RP; Serhan CN; Hammock BD
    Cancer Metastasis Rev; 2020 Jun; 39(2):337-340. PubMed ID: 32385712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Research Trends in Cytokine Storm: A Scientometric Study.
    Wang KT; Xu D; Wang YL; Dong XR; Tang J; Wang Y; Qiao T; Zhang H; Wang QS; Cui YL
    Curr Drug Targets; 2022; 23(12):1136-1154. PubMed ID: 35430989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered increase in STAT1 expression and phosphorylation in severe COVID-19.
    Rincon-Arevalo H; Aue A; Ritter J; Szelinski F; Khadzhynov D; Zickler D; Stefanski L; Lino AC; Körper S; Eckardt KU; Schrezenmeier H; Dörner T; Schrezenmeier EV
    Eur J Immunol; 2022 Jan; 52(1):138-148. PubMed ID: 34676541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Metabolic Changes and Immune Profiles in Patients With COVID-19.
    He B; Wang J; Wang Y; Zhao J; Huang J; Tian Y; Yang C; Zhang H; Zhang M; Gu L; Zhou X; Zhou J
    Front Immunol; 2020; 11():2075. PubMed ID: 32983157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic Predictive Risk Factors for Cytokine Storms in COVID-19 Patients.
    Shcherbak SG; Anisenkova AY; Mosenko SV; Glotov OS; Chernov AN; Apalko SV; Urazov SP; Garbuzov EY; Khobotnikov DN; Klitsenko OA; Minina EM; Asaulenko ZP
    Front Immunol; 2021; 12():745515. PubMed ID: 34858403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.