BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34676373)

  • 1. Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery.
    Zhao Y; Zheng B; Chapman SC; Laws K; George-Jaeggli B; Hammer GL; Jordan DR; Potgieter AB
    Plant Phenomics; 2021; 2021():9874650. PubMed ID: 34676373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerial Imagery Analysis - Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy.
    Guo W; Zheng B; Potgieter AB; Diot J; Watanabe K; Noshita K; Jordan DR; Wang X; Watson J; Ninomiya S; Chapman SC
    Front Plant Sci; 2018; 9():1544. PubMed ID: 30405675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning.
    Dhakal R; Maimaitijiang M; Chang J; Caffe M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV.
    Duan T; Zheng B; Guo W; Ninomiya S; Guo Y; Chapman SC
    Funct Plant Biol; 2016 Feb; 44(1):169-183. PubMed ID: 32480555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines.
    Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL
    Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Scoring of Rhizoctonia Crown and Root Rot Affected Sugar Beet Fields from Orthorectified UAV Images Using Machine Learning.
    Ispizua Yamati FR; Günder M; Barreto A; Bömer J; Laufer D; Bauckhage C; Mahlein AK
    Plant Dis; 2024 Mar; 108(3):711-724. PubMed ID: 37755420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding.
    Tattaris M; Reynolds MP; Chapman SC
    Front Plant Sci; 2016; 7():1131. PubMed ID: 27536304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Stress Induced by Soybean Aphid (Hemiptera: Aphididae) Using Multispectral Imagery from Unmanned Aerial Vehicles.
    Marston ZPD; Cira TM; Hodgson EW; Knight JF; Macrae IV; Koch RL
    J Econ Entomol; 2020 Apr; 113(2):779-786. PubMed ID: 31782504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi temporal multispectral UAV remote sensing allows for yield assessment across European wheat varieties already before flowering.
    Camenzind MP; Yu K
    Front Plant Sci; 2023; 14():1214931. PubMed ID: 38235203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of UAV and very high-resolution satellite imagery for yellow and stem rust detection and phenotyping in Ethiopia.
    Blasch G; Anberbir T; Negash T; Tilahun L; Belayineh FY; Alemayehu Y; Mamo G; Hodson DP; Rodrigues FA
    Sci Rep; 2023 Oct; 13(1):16768. PubMed ID: 37798287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System.
    Li J; Shi Y; Veeranampalayam-Sivakumar AN; Schachtman DP
    Front Plant Sci; 2018; 9():1406. PubMed ID: 30333843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.
    Li F; Piasecki C; Millwood RJ; Wolfe B; Mazarei M; Stewart CN
    Front Plant Sci; 2020; 11():574073. PubMed ID: 33193511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery.
    Li X; Ba Y; Zhang M; Nong M; Yang C; Zhang S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.