These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34676391)

  • 1. A survey of circular RNAs in complex diseases: databases, tools and computational methods.
    Xiao Q; Dai J; Luo J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34676391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular RNAs and complex diseases: from experimental results to computational models.
    Wang CC; Han CD; Zhao Q; Chen X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34329377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning.
    Xiao Q; Fu Y; Yang Y; Dai J; Luo J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer.
    Hu F; Peng Y; Fan X; Zhang X; Jin Z
    Cancer Biol Med; 2023 Mar; 20(2):104-28. PubMed ID: 36861443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations.
    Xiao Q; Yu H; Zhong J; Liang C; Li G; Ding P; Luo J
    Genomics; 2020 Sep; 112(5):3407-3415. PubMed ID: 32561349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease-Associated Circular RNAs: From Biology to Computational Identification.
    Tang M; Kui L; Lu G; Chen W
    Biomed Res Int; 2020; 2020():6798590. PubMed ID: 32908906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive survey on computational methods of non-coding RNA and disease association prediction.
    Lei X; Mudiyanselage TB; Zhang Y; Bian C; Lan W; Yu N; Pan Y
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33341893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting human disease-associated circRNAs based on locality-constrained linear coding.
    Ge E; Yang Y; Gang M; Fan C; Zhao Q
    Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction.
    Wang L; Wong L; Li Z; Huang Y; Su X; Zhao B; You Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.
    Chen L; Zhao X
    Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization.
    Qiao LJ; Gao Z; Ji CM; Liu ZH; Zheng CH; Wang YT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3154-3162. PubMed ID: 37018084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.