These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 34676458)

  • 1. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N; Nikalje GC; Zargar SM; Suprasanna P
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of Arabidopsis's heat shock factor HsfA1d mitigates adverse effects of heat stress on potato (Solanum tuberosum L.) plant.
    Shah Z; Shah SH; Ali GS; Munir I; Khan RS; Iqbal A; Ahmed N; Jan A
    Cell Stress Chaperones; 2020 Jan; 25(1):57-63. PubMed ID: 31898287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular insights into mechanisms underlying thermo-tolerance in tomato.
    Singh AK; Mishra P; Kashyap SP; Karkute SG; Singh PM; Rai N; Bahadur A; Behera TK
    Front Plant Sci; 2022; 13():1040532. PubMed ID: 36388532
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gai WX; Ma X; Li Y; Xiao JJ; Khan A; Li QH; Gong ZH
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants.
    Zeng C; Jia T; Gu T; Su J; Hu X
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L.
    Kaur R; Sinha K; Bhunia RK
    Mol Biol Rep; 2019 Apr; 46(2):2577-2593. PubMed ID: 30758807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants.
    Wang R; Mao C; Jiang C; Zhang L; Peng S; Zhang Y; Feng S; Ming F
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway.
    Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP
    Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification.
    Zhang H; Jiang C; Wang R; Zhang L; Gai R; Peng S; Zhang Y; Mao C; Lou Y; Mo J; Feng S; Ming F
    Plant Mol Biol; 2021 Aug; 106(6):569-587. PubMed ID: 34260001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Stress Responses and Thermotolerance in Maize.
    Li Z; Howell SH
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling differential expression profiles of the wheat DOG1 gene family and functional analysis of the association between TaDOG1-1 and heat stress tolerance in transgenic Arabidopsis.
    Ko CS; Kim JB; Kim DY; Seo YW; Hong MJ
    Plant Physiol Biochem; 2024 Feb; 207():108325. PubMed ID: 38176188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biological characteristics of heat shock transcription factors and their roles in abiotic stress adaptation of higher plant].
    Shao KZ; Lyu XP; Li JL; Chen J; Zhao LY; Ren W; Zhang JL
    Ying Yong Sheng Tai Xue Bao; 2022 Aug; 33(8):2286-2296. PubMed ID: 36043838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates.
    Lavania D; Dhingra A; Siddiqui MH; Al-Whaibi MH; Grover A
    Plant Physiol Biochem; 2015 Jan; 86():100-108. PubMed ID: 25438142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heat Shock Proteins in Plant Protection from Oxidative Stress].
    Yurina NP
    Mol Biol (Mosk); 2023; 57(6):949-964. PubMed ID: 38062952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X; Huang W; Liu J; Yang Z; Huang B
    Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding molecular switches in plant heat stress resistance: A comprehensive review.
    Haider S; Iqbal J; Naseer S; Shaukat M; Abbasi BA; Yaseen T; Zahra SA; Mahmood T
    Plant Cell Rep; 2022 Mar; 41(3):775-798. PubMed ID: 34401950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense.
    Liu W; Zhang Y; Zhang B; Zou H
    Plant Physiol Biochem; 2023 Jun; 199():107719. PubMed ID: 37148659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco.
    Panzade KP; Vishwakarma H; Padaria JC
    Mol Biol Rep; 2020 May; 47(5):3821-3831. PubMed ID: 32367315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco.
    Zhu X; Wang Y; Liu Y; Zhou W; Yan B; Yang J; Shen Y
    PLoS One; 2018; 13(11):e0207277. PubMed ID: 30427910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.