These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 34676533)
1. Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways. Cooper CM; Farrand AQ; Andresen MC; Beaumont E J Physiol; 2021 Dec; 599(23):5261-5279. PubMed ID: 34676533 [TBL] [Abstract][Full Text] [Related]
2. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Beaumont E; Campbell RP; Andresen MC; Scofield S; Singh K; Libbus I; KenKnight BH; Snyder L; Cantrell N Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H354-H367. PubMed ID: 28476920 [TBL] [Abstract][Full Text] [Related]
3. Brainstem neuronal responses to transcutaneous auricular and cervical vagus nerve stimulation in rats. Owens MM; Jacquemet V; Napadow V; Lewis N; Beaumont E J Physiol; 2024 Aug; 602(16):4027-4052. PubMed ID: 39031516 [TBL] [Abstract][Full Text] [Related]
4. The auriculo-vagal afferent pathway and its role in seizure suppression in rats. He W; Jing XH; Zhu B; Zhu XL; Li L; Bai WZ; Ben H BMC Neurosci; 2013 Aug; 14():85. PubMed ID: 23927528 [TBL] [Abstract][Full Text] [Related]
5. Properties of solitary tract neurons receiving inputs from the sub-diaphragmatic vagus nerve. Paton JF; Li YW; Deuchars J; Kasparov S Neuroscience; 2000; 95(1):141-53. PubMed ID: 10619470 [TBL] [Abstract][Full Text] [Related]
6. Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Fawley JA; Hegarty DM; Aicher SA; Beaumont E; Andresen MC Brain Res; 2021 Oct; 1769():147625. PubMed ID: 34416255 [TBL] [Abstract][Full Text] [Related]
7. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. McDougall SJ; Guo H; Andresen MC J Physiol; 2017 Feb; 595(3):901-917. PubMed ID: 27616729 [TBL] [Abstract][Full Text] [Related]
8. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Frangos E; Ellrich J; Komisaruk BR Brain Stimul; 2015; 8(3):624-36. PubMed ID: 25573069 [TBL] [Abstract][Full Text] [Related]
9. Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse. Paton JF J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):237-52. PubMed ID: 9490844 [TBL] [Abstract][Full Text] [Related]
10. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans. Frangos E; Komisaruk BR Brain Stimul; 2017; 10(1):19-27. PubMed ID: 28104084 [TBL] [Abstract][Full Text] [Related]
11. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Osharina V; Bagaev V; Wallois F; Larnicol N Auton Neurosci; 2006 Jun; 126-127():72-80. PubMed ID: 16713370 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the distribution of vagal afferent projections from different peripheral organs to the nucleus of the solitary tract in rats. Bassi JK; Connelly AA; Butler AG; Liu Y; Ghanbari A; Farmer DGS; Jenkins MW; Melo MR; McDougall SJ; Allen AM J Comp Neurol; 2022 Dec; 530(17):3072-3103. PubMed ID: 35988033 [TBL] [Abstract][Full Text] [Related]
13. Anti-seizure effect and neuronal activity change in the genetic-epileptic model rat with acute and chronic vagus nerve stimulation. Katagiri M; Iida K; Ishihara K; Nair D; Harada K; Kagawa K; Seyama G; Hashizume A; Kuramoto T; Hanaya R; Arita K; Kurisu K Epilepsy Res; 2019 Sep; 155():106159. PubMed ID: 31277035 [TBL] [Abstract][Full Text] [Related]