BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34676755)

  • 21. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation.
    Pause A; Méthot N; Svitkin Y; Merrick WC; Sonenberg N
    EMBO J; 1994 Mar; 13(5):1205-15. PubMed ID: 8131750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity.
    Korneeva NL; First EA; Benoit CA; Rhoads RE
    J Biol Chem; 2005 Jan; 280(3):1872-81. PubMed ID: 15528191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human eukaryotic initiation factor 4E (eIF4E) and the nucleotide-bound state of eIF4A regulate eIF4F binding to RNA.
    Izidoro MS; Sokabe M; Villa N; Merrick WC; Fraser CS
    J Biol Chem; 2022 Oct; 298(10):102368. PubMed ID: 35963437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A.
    Rogers GW; Richter NJ; Merrick WC
    J Biol Chem; 1999 Apr; 274(18):12236-44. PubMed ID: 10212190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DEAD-box helicase eIF4A: paradigm or the odd one out?
    Andreou AZ; Klostermeier D
    RNA Biol; 2013 Jan; 10(1):19-32. PubMed ID: 22995829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ATP-dependent interaction of eukaryotic initiation factors with mRNA.
    Abramson RD; Dever TE; Lawson TG; Ray BK; Thach RE; Merrick WC
    J Biol Chem; 1987 Mar; 262(8):3826-32. PubMed ID: 2950099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. eIF4B stimulates translation of long mRNAs with structured 5' UTRs and low closed-loop potential but weak dependence on eIF4G.
    Sen ND; Zhou F; Harris MS; Ingolia NT; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10464-72. PubMed ID: 27601676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-stranded regions modulate conformational dynamics and ATPase activity of eIF4A to optimize 5'-UTR unwinding.
    Andreou AZ; Harms U; Klostermeier D
    Nucleic Acids Res; 2019 Jun; 47(10):5260-5275. PubMed ID: 30997503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA-stimulated ATPase activity of eukaryotic initiation factors.
    Grifo JA; Abramson RD; Satler CA; Merrick WC
    J Biol Chem; 1984 Jul; 259(13):8648-54. PubMed ID: 6145716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle.
    Harms U; Andreou AZ; Gubaev A; Klostermeier D
    Nucleic Acids Res; 2014 Jul; 42(12):7911-22. PubMed ID: 24848014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The eukaryotic initiation factor eIF4H facilitates loop-binding, repetitive RNA unwinding by the eIF4A DEAD-box helicase.
    Sun Y; Atas E; Lindqvist L; Sonenberg N; Pelletier J; Meller A
    Nucleic Acids Res; 2012 Jul; 40(13):6199-207. PubMed ID: 22457067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: negation of domain-linker regulation of activity.
    Low WK; Dang Y; Bhat S; Romo D; Liu JO
    Chem Biol; 2007 Jun; 14(6):715-27. PubMed ID: 17584618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of the allosteric regulation of eIF4A protein from the open to closed state, induced by ATP and RNA substrates.
    Meng H; Li C; Wang Y; Chen G
    PLoS One; 2014; 9(1):e86104. PubMed ID: 24465900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical evidence supporting a mechanism for cap-independent and internal initiation of eukaryotic mRNA.
    Abramson RD; Dever TE; Merrick WC
    J Biol Chem; 1988 May; 263(13):6016-9. PubMed ID: 2966150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A.
    Sen ND; Zhou F; Ingolia NT; Hinnebusch AG
    Genome Res; 2015 Aug; 25(8):1196-205. PubMed ID: 26122911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae.
    Blum S; Schmid SR; Pause A; Buser P; Linder P; Sonenberg N; Trachsel H
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7664-8. PubMed ID: 1502180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The steroid derivative 6-aminocholestanol inhibits the DEAD-box helicase eIF4A (LieIF4A) from the Trypanosomatid parasite Leishmania by perturbing the RNA and ATP binding sites.
    Abdelkrim YZ; Harigua-Souiai E; Barhoumi M; Banroques J; Blondel A; Guizani I; Tanner NK
    Mol Biochem Parasitol; 2018 Dec; 226():9-19. PubMed ID: 30365976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI.
    Zakowicz H; Yang HS; Stark C; Wlodawer A; Laronde-Leblanc N; Colburn NH
    RNA; 2005 Mar; 11(3):261-74. PubMed ID: 15661843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATPase activities of wheat germ initiation factors 4A, 4B, and 4F.
    Lax SR; Browning KS; Maia DM; Ravel JM
    J Biol Chem; 1986 Nov; 261(33):15632-6. PubMed ID: 2946676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B.
    Jaramillo M; Dever TE; Merrick WC; Sonenberg N
    Mol Cell Biol; 1991 Dec; 11(12):5992-7. PubMed ID: 1719376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.