These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34676853)

  • 21. Tuning MoSO monolayer properties for optoelectronic and spintronic applications: effect of external strain, vacancies and doping.
    Nguyen DK; Guerrero-Sanchez J; Van On V; Rivas-Silva JF; Ponce-Pérez R; Cocoletzi GH; Hoat DM
    RSC Adv; 2021 Oct; 11(56):35614-35623. PubMed ID: 35493147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the electronic properties of transition-metal trichalcogenides via tensile strain.
    Li M; Dai J; Zeng XC
    Nanoscale; 2015 Oct; 7(37):15385-91. PubMed ID: 26332584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strain-tunable electric structure and magnetic anisotropy in monolayer CrSI.
    Han R; Yan Y
    Phys Chem Chem Phys; 2019 Oct; 21(37):20892-20900. PubMed ID: 31517346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel two-dimensional ferromagnetic semiconductors: Ga-based transition-metal trichalcogenide monolayers.
    Yu M; Liu X; Guo W
    Phys Chem Chem Phys; 2018 Feb; 20(9):6374-6382. PubMed ID: 29441379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides.
    Vu TV; Vi VTT; Phuc HV; Nguyen CV; Poklonski NA; Duque CA; Rai DP; Hoi BD; Hieu NN
    J Phys Condens Matter; 2021 May; 33(22):. PubMed ID: 33784649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles investigation of a new 2D magnetic crystal: Ferromagnetic ordering and intrinsic half-metallicity.
    Li BG; Zheng YF; Cui H; Wang P; Zhou TW; Wang DD; Chen H; Yuan HK
    J Chem Phys; 2020 Jun; 152(24):244704. PubMed ID: 32610998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable abundant valley Hall effect and chiral spin-valley locking in Janus monolayer VCGeN
    Jia K; Dong XJ; Li SS; Ji WX; Zhang CW
    Nanoscale; 2024 May; 16(17):8639-8649. PubMed ID: 38618905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ferromagnetic and Half-Metallic FeC
    Zhao T; Zhou J; Wang Q; Kawazoe Y; Jena P
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26207-26212. PubMed ID: 27622850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable magnetic anisotropy in Cr-trihalide Janus monolayers.
    Albaridy R; Manchon A; Schwingenschlögl U
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32469846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Symmetry-Breaking Phase in Two-Dimensional FeTe
    Liu L; Chen S; Lin Z; Zhang X
    J Phys Chem Lett; 2020 Sep; 11(18):7893-7900. PubMed ID: 32787292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric polarization related Dirac half-metallicity in Mn-trihalide Janus monolayers.
    Li Z; Zhang J; Zhou B
    Phys Chem Chem Phys; 2020 Nov; 22(45):26468-26477. PubMed ID: 33185231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic proximity effect induced spin-dependent electronic structure in two-dimensional SnO by half-metallic monolayer CrN ferromagnet.
    Nie K; Wang X; Mi W
    Phys Chem Chem Phys; 2019 Mar; 21(13):6984-6990. PubMed ID: 30869713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equibiaxial strain regulates the electronic structure and mechanical, piezoelectric, and thermal transport properties of the 2H-phase monolayers CrX
    Chen SB; Guo SD; Yan WJ; Chen XR; Geng HY
    Phys Chem Chem Phys; 2024 Jan; 26(4):3159-3167. PubMed ID: 38190261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-tunable magnetic and electronic properties of a CuCl
    Lin L; Liu H; Huang Y; Long W; Zhou J; Yao X; Jiang Q; Lu H
    Phys Chem Chem Phys; 2022 Jul; 24(28):17329-17336. PubMed ID: 35819000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First principles prediction of two-dimensional Janus XMoGeN
    Nguyen ST; Cuong PV; Cuong NQ; Nguyen CV
    Dalton Trans; 2022 Sep; 51(37):14338-14344. PubMed ID: 36069507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles insights onto structural, electronic and optical properties of Janus monolayers CrXO (X = S, Se, Te).
    Linh TPT; Hieu NN; Phuc HV; Nguyen CQ; Vinh PT; Thai NQ; Hieu NV
    RSC Adv; 2021 Dec; 11(63):39672-39679. PubMed ID: 35494112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embedding of atoms into the nanopore sites of the C
    Bafekry A; Stampfl C; Akgenc B; Mortazavi B; Ghergherehchi M; Nguyen CV
    Phys Chem Chem Phys; 2020 Mar; 22(11):6418-6433. PubMed ID: 32149297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain Tunable Thermoelectric Material: Janus ZrSSe Monolayer.
    Huang SZ; Fang CG; Feng QY; Wang BY; Yang HD; Li B; Xiang X; Zu XT; Deng HX
    Langmuir; 2023 Feb; 39(7):2719-2728. PubMed ID: 36753560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.