BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34677046)

  • 1. Exploiting
    Cain JA; Dale AL; Cordwell SJ
    J Proteome Res; 2021 Nov; 20(11):4995-5009. PubMed ID: 34677046
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O.
    Scott NE; Marzook NB; Cain JA; Solis N; Thaysen-Andersen M; Djordjevic SP; Packer NH; Larsen MR; Cordwell SJ
    J Proteome Res; 2014 Nov; 13(11):5136-50. PubMed ID: 25093254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics Reveals Multiple Phenotypes Associated with
    Cain JA; Dale AL; Niewold P; Klare WP; Man L; White MY; Scott NE; Cordwell SJ
    Mol Cell Proteomics; 2019 Apr; 18(4):715-734. PubMed ID: 30617158
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB.
    Ihssen J; Kowarik M; Wiesli L; Reiss R; Wacker M; Thöny-Meyer L
    BMC Biotechnol; 2012 Sep; 12():67. PubMed ID: 23006740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.
    Ihssen J; Haas J; Kowarik M; Wiesli L; Wacker M; Schwede T; Thöny-Meyer L
    Open Biol; 2015 Apr; 5(4):140227. PubMed ID: 25833378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligosaccharyltransferase PglB of Campylobacter jejuni is a glycoprotein.
    Bokhari H; Maryam A; Shahid R; Siddiqi AR
    World J Microbiol Biotechnol; 2019 Dec; 36(1):9. PubMed ID: 31858269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons.
    Silverman JM; Imperiali B
    J Biol Chem; 2016 Oct; 291(42):22001-22010. PubMed ID: 27573243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of N-linked protein glycosylation in Helicobacter pullorum.
    Jervis AJ; Langdon R; Hitchen P; Lawson AJ; Wood A; Fothergill JL; Morris HR; Dell A; Wren B; Linton D
    J Bacteriol; 2010 Oct; 192(19):5228-36. PubMed ID: 20581208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements.
    Ielmini MV; Feldman MF
    Glycobiology; 2011 Jun; 21(6):734-42. PubMed ID: 21098514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression and topology of bacterial oligosaccharyltransferase PglB.
    Li L; Woodward R; Ding Y; Liu XW; Yi W; Bhatt VS; Chen M; Zhang LW; Wang PG
    Biochem Biophys Res Commun; 2010 Apr; 394(4):1069-74. PubMed ID: 20331969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni.
    Barre Y; Nothaft H; Thomas C; Liu X; Li J; Ng KKS; Szymanski CM
    Glycobiology; 2017 Oct; 27(10):978-989. PubMed ID: 28922740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Campylobacter jejuni free oligosaccharides: function and fate.
    Nothaft H; Liu X; Li J; Szymanski CM
    Virulence; 2010; 1(6):546-50. PubMed ID: 21178500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Glycosylation with synthetic undecaprenyl pyrophosphate-linked oligosaccharide to oligopeptides by PglB oligosaccharyltransferase from Campylobacter jejuni.
    Ishiwata A; Taguchi Y; Lee YJ; Watanabe T; Kohda D; Ito Y
    Chembiochem; 2015 Mar; 16(5):731-7. PubMed ID: 25688550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB.
    Lizak C; Gerber S; Zinne D; Michaud G; Schubert M; Chen F; Bucher M; Darbre T; Zenobi R; Reymond JL; Locher KP
    J Biol Chem; 2014 Jan; 289(2):735-46. PubMed ID: 24275651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation.
    Lizak C; Gerber S; Michaud G; Schubert M; Fan YY; Bucher M; Darbre T; Aebi M; Reymond JL; Locher KP
    Nat Commun; 2013; 4():2627. PubMed ID: 24149797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.
    Linton D; Dorrell N; Hitchen PG; Amber S; Karlyshev AV; Morris HR; Dell A; Valvano MA; Aebi M; Wren BW
    Mol Microbiol; 2005 Mar; 55(6):1695-703. PubMed ID: 15752194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Definition of the bacterial N-glycosylation site consensus sequence.
    Kowarik M; Young NM; Numao S; Schulz BL; Hug I; Callewaert N; Mills DC; Watson DC; Hernandez M; Kelly JF; Wacker M; Aebi M
    EMBO J; 2006 May; 25(9):1957-66. PubMed ID: 16619027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences.
    Ollis AA; Chai Y; Natarajan A; Perregaux E; Jaroentomeechai T; Guarino C; Smith J; Zhang S; DeLisa MP
    Sci Rep; 2015 Oct; 5():15237. PubMed ID: 26482295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity.
    Ollis AA; Zhang S; Fisher AC; DeLisa MP
    Nat Chem Biol; 2014 Oct; 10(10):816-22. PubMed ID: 25129029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases.
    Maita N; Nyirenda J; Igura M; Kamishikiryo J; Kohda D
    J Biol Chem; 2010 Feb; 285(7):4941-50. PubMed ID: 20007322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.