BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34677337)

  • 21. Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification.
    Khachornsakkul K; Rybicki FJ; Sonkusale S
    Talanta; 2023 Aug; 260():124538. PubMed ID: 37087948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sensitive biosensor for glucose determination based on the unique catalytic chemiluminescence of sodium molybdate.
    Yao W; Zhang X; Lin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120401. PubMed ID: 34555694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-Field Communication Tag for Colorimetric Glutathione Determination with a Paper-Based Microfluidic Device.
    Ortiz-Gómez I; Rivadeneyra A; Salmerón JF; Orbe-Payá I; Morales DP; Capitán-Vallvey LF; Salinas-Castillo A
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real time monitoring of glucose in whole blood by smartphone.
    Erenas MM; Carrillo-Aguilera B; Cantrell K; Gonzalez-Chocano S; Perez de Vargas-Sansalvador IM; de Orbe-Payá I; Capitan-Vallvey LF
    Biosens Bioelectron; 2019 Jul; 136():47-52. PubMed ID: 31035026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of luminol chemiluminescence based on simultaneous introducing of coumarin derivatives as green fluorophores and chitosan-induced Au/Ag alloy nanoparticle as catalyst for the sensitive determination of glucose.
    Chaichi MJ; Alijanpour SO; Asghari S; Shadlou S
    J Fluoresc; 2015 Mar; 25(2):263-75. PubMed ID: 25641112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid.
    Yu J; Ge L; Huang J; Wang S; Ge S
    Lab Chip; 2011 Apr; 11(7):1286-91. PubMed ID: 21243159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone.
    Zheng J; Zhu M; Kong J; Li Z; Jiang J; Xi Y; Li F
    Talanta; 2022 Jan; 237():122954. PubMed ID: 34736679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system.
    Chaichi MJ; Alijanpour SO
    J Photochem Photobiol B; 2014 Nov; 140():41-8. PubMed ID: 25086323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iodophenol blue-enhanced luminol chemiluminescence and its application to hydrogen peroxide and glucose detection.
    Yu D; Wang P; Zhao Y; Fan A
    Talanta; 2016 Jan; 146():655-61. PubMed ID: 26695314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film.
    Cao L; Han GC; Xiao H; Chen Z; Fang C
    Anal Chim Acta; 2020 Feb; 1096():34-43. PubMed ID: 31883589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Paper-Based Microfluidic Analysis Device for Simultaneous Detection of Multiple Biomarkers with a Smartphone.
    Baek SH; Park C; Jeon J; Park S
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33233440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development a novel approach of chemiluminescent probe array.
    Li X; Zhang Z; Tao L; Li Y; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():67-71. PubMed ID: 24177871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer.
    Nozaki O; Kawamoto H
    Luminescence; 2000; 15(3):137-42. PubMed ID: 10862141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemiluminescence detection in microfluidic cloth-based analytical devices.
    Guan W; Liu M; Zhang C
    Biosens Bioelectron; 2016 Jan; 75():247-53. PubMed ID: 26319168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming.
    Chen X; Ning Y; Pan S; Liu B; Chang Y; Pang W; Duan X
    ACS Sens; 2021 Jun; 6(6):2386-2394. PubMed ID: 34102847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole blood glucose analysis based on smartphone camera module.
    Devadhasan JP; Oh H; Choi CS; Kim S
    J Biomed Opt; 2015 Nov; 20(11):117001. PubMed ID: 26524683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemiluminescence detection for microfluidic cloth-based analytical devices (μCADs).
    Guan W; Zhang C; Liu F; Liu M
    Biosens Bioelectron; 2015 Oct; 72():114-20. PubMed ID: 25974173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of phosphorus in water and chemical fertilizer samples using a simple drawing microfluidic paper-based analytical device.
    Phansi P; Janthama S; Cerdà V; Nacapricha D
    Anal Sci; 2022 Oct; 38(10):1323-1332. PubMed ID: 35876988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.