These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34677357)

  • 1. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype.
    Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HT-29 Colon Cancer Cell Electromanipulation and Assessment Based on Their Electrical Properties.
    Olariu MA; Tucureanu C; Filip TA; Caras I; Salageanu A; Vasile V; Avram M; Tincu B; Turcan I
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties.
    Zhang Y; Murakami K; Borra VJ; Ozen MO; Demirci U; Nakamura T; Esfandiari L
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy.
    Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V
    Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization.
    Turcan I; Olariu MA
    ACS Comb Sci; 2020 Nov; 22(11):554-578. PubMed ID: 32786320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic and electrochemical impedance mapping of metastatic potential in MDA-MB-231 breast cancer cells using inkjet-printed castellated microarray.
    Awad MF; Habli Z; Saleh S; El-Sabban M; Khraiche ML
    Lab Chip; 2024 Sep; 24(18):4264-4274. PubMed ID: 39162210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Evaluation of Burn Injuries Based on Electrical Impedance Spectroscopy of Blood with a Seven-Parameter Equivalent Circuit.
    Bao H; Li J; Wen J; Cheng L; Hu Y; Zhang Y; Wan N; Takei M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lead exposure on blood electrical impedance spectroscopy of mice.
    Yang B; Xu J; Hu S; You B; Ma Q
    Biomed Eng Online; 2021 Oct; 20(1):99. PubMed ID: 34620171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Esophageal Cancerous Cells at Different Stages Using the Dielectrophoretic Impedance Measurement Method in a Microchip.
    Wang HC; Nguyen NV; Lin RY; Jen CP
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells.
    Crowell LL; Yakisich JS; Aufderheide B; Adams TNG
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic Characterization of 2D and 3D Prostate Cancer Cell Systems Using Electrical Impedance Spectroscopy.
    Crowell LL; Yakisich JS; Aufderheide B; Adams TNG
    Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel.
    Nguyen NV; Jen CP
    Biosens Bioelectron; 2018 Dec; 121():10-18. PubMed ID: 30189335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Choose a Proper Theoretical Analysis Model Based on Cell Adhesion and Nonadhesion Impedance Measurement.
    Wei M; Zhang R; Zhang F; Yang N; Zhang Y; Li G
    ACS Sens; 2021 Mar; 6(3):673-687. PubMed ID: 33724797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.