These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34677573)

  • 21. Recent Development of Bioinformatics Tools for microRNA Target Prediction.
    Khatun MS; Alam MA; Shoombuatong W; Mollah MNH; Kurata H; Hasan MM
    Curr Med Chem; 2022; 29(5):865-880. PubMed ID: 34348604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ImiRP: a computational approach to microRNA target site mutation.
    Ryan BC; Werner TS; Howard PL; Chow RL
    BMC Bioinformatics; 2016 Apr; 17():190. PubMed ID: 27122020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. miTAR: a hybrid deep learning-based approach for predicting miRNA targets.
    Gu T; Zhao X; Barbazuk WB; Lee JH
    BMC Bioinformatics; 2021 Feb; 22(1):96. PubMed ID: 33639834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of Functional MicroRNA Targeting.
    Hwang H; Chang HR; Baek D
    Mol Cells; 2023 Jan; 46(1):21-32. PubMed ID: 36697234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naïve Bayes classifier predicts functional microRNA target interactions in colorectal cancer.
    Amirkhah R; Farazmand A; Gupta SK; Ahmadi H; Wolkenhauer O; Schmitz U
    Mol Biosyst; 2015 Aug; 11(8):2126-34. PubMed ID: 26086375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. miRTar Hunter: a prediction system for identifying human microRNA target sites.
    Park K; Kim KB
    Mol Cells; 2013 Mar; 35(3):195-201. PubMed ID: 23475422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex.
    Mohebbi M; Ding L; Malmberg RL; Momany C; Rasheed K; Cai L
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850013. PubMed ID: 30012015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MiRNATIP: a SOM-based miRNA-target interactions predictor.
    Fiannaca A; Rosa M; Paglia L; Rizzo R; Urso A
    BMC Bioinformatics; 2016 Sep; 17(Suppl 11):321. PubMed ID: 28185545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A least angle regression model for the prediction of canonical and non-canonical miRNA-mRNA interactions.
    Engelmann JC; Spang R
    PLoS One; 2012; 7(7):e40634. PubMed ID: 22815777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological features between miRNAs and their targets are unveiled from deep learning models.
    Gu T; Xie M; Barbazuk WB; Lee JH
    Sci Rep; 2021 Dec; 11(1):23825. PubMed ID: 34893648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions.
    Singh S; Benton RG; Singh A; Singh A
    Methods Mol Biol; 2017; 1617():211-224. PubMed ID: 28540688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A two-step site and mRNA-level model for predicting microRNA targets.
    Saito T; Sætrom P
    BMC Bioinformatics; 2010 Dec; 11():612. PubMed ID: 21194446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles.
    Zhang W; Le TD; Liu L; Zhou ZH; Li J
    PLoS One; 2016; 11(4):e0152860. PubMed ID: 27064982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling microRNA-mRNA interactions using PLS regression in human colon cancer.
    Li X; Gill R; Cooper NG; Yoo JK; Datta S
    BMC Med Genomics; 2011 May; 4():44. PubMed ID: 21595958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significant improvement of miRNA target prediction accuracy in large datasets using meta-strategy based on comprehensive voting and artificial neural networks.
    Zhao B; Xue B
    BMC Genomics; 2019 Feb; 20(1):158. PubMed ID: 30813885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer.
    Zhang J; Liu L; Li J; Le TD
    Bioinformatics; 2018 Dec; 34(24):4232-4240. PubMed ID: 29955818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-stream convolutional neural network for microRNA transcription start site feature integration and identification.
    Cha M; Zheng H; Talukder A; Barham C; Li X; Hu H
    Sci Rep; 2021 Mar; 11(1):5625. PubMed ID: 33707582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.