These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes. Westgate PM Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512 [TBL] [Abstract][Full Text] [Related]
7. Bayesian inference for two-phase studies with categorical covariates. Ross M; Wakefield J Biometrics; 2013 Jun; 69(2):469-77. PubMed ID: 23607570 [TBL] [Abstract][Full Text] [Related]
8. Optimal sampling allocation for outcome-dependent designs in cluster-correlated data settings. Rivera-Rodriguez C; Haneuse S; Sauer S Stat Methods Med Res; 2022 Dec; 31(12):2400-2414. PubMed ID: 36039539 [TBL] [Abstract][Full Text] [Related]
9. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Spiegelman D; Carroll RJ; Kipnis V Stat Med; 2001 Jan; 20(1):139-160. PubMed ID: 11135353 [TBL] [Abstract][Full Text] [Related]
10. Semiparametric inference for a two-stage outcome-dependent sampling design with interval-censored failure time data. Zhou Q; Cai J; Zhou H Lifetime Data Anal; 2020 Jan; 26(1):85-108. PubMed ID: 30617753 [TBL] [Abstract][Full Text] [Related]
11. Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression. Wang CY; Dai J Stat Med; 2019 Jul; 38(15):2783-2796. PubMed ID: 30908669 [TBL] [Abstract][Full Text] [Related]
12. On the analysis of two-phase designs in cluster-correlated data settings. Rivera-Rodriguez C; Spiegelman D; Haneuse S Stat Med; 2019 Oct; 38(23):4611-4624. PubMed ID: 31359448 [TBL] [Abstract][Full Text] [Related]
13. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems. Xie Y; Zhang B Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139 [TBL] [Abstract][Full Text] [Related]
14. Augmented pseudo-likelihood estimation for two-phase studies. Rivera-Rodriguez C; Haneuse S; Wang M; Spiegelman D Stat Methods Med Res; 2020 Feb; 29(2):344-358. PubMed ID: 30834815 [TBL] [Abstract][Full Text] [Related]
15. Analysis of two-phase sampling data with semiparametric additive hazards models. Sun Y; Qian X; Shou Q; Gilbert PB Lifetime Data Anal; 2017 Jul; 23(3):377-399. PubMed ID: 26995733 [TBL] [Abstract][Full Text] [Related]
16. Two-wave two-phase outcome-dependent sampling designs, with applications to longitudinal binary data. Tao R; Mercaldo ND; Haneuse S; Maronge JM; Rathouz PJ; Heagerty PJ; Schildcrout JS Stat Med; 2021 Apr; 40(8):1863-1876. PubMed ID: 33442883 [TBL] [Abstract][Full Text] [Related]
17. Optimal Designs of Two-Phase Studies. Tao R; Zeng D; Lin DY J Am Stat Assoc; 2020; 115(532):1946-1959. PubMed ID: 33716361 [TBL] [Abstract][Full Text] [Related]
18. Rank-based estimating equations with general weight for accelerated failure time models: an induced smoothing approach. Chiou S; Kang S; Yan J Stat Med; 2015 Apr; 34(9):1495-510. PubMed ID: 25640630 [TBL] [Abstract][Full Text] [Related]
19. Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies. Tao R; Zeng D; Lin DY J Am Stat Assoc; 2017; 112(520):1468-1476. PubMed ID: 29479125 [TBL] [Abstract][Full Text] [Related]
20. Efficient designs and analysis of two-phase studies with longitudinal binary data. Di Gravio C; Schildcrout JS; Tao R Biometrics; 2024 Jan; 80(1):. PubMed ID: 38364804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]