These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. Luckner SR; Liu N; am Ende CW; Tonge PJ; Kisker C J Biol Chem; 2010 May; 285(19):14330-7. PubMed ID: 20200152 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. Rozwarski DA; Vilchèze C; Sugantino M; Bittman R; Sacchettini JC J Biol Chem; 1999 May; 274(22):15582-9. PubMed ID: 10336454 [TBL] [Abstract][Full Text] [Related]
4. Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors. da Silva Lima CH; de Alencastro RB; Kaiser CR; de Souza MV; Rodrigues CR; Albuquerque MG Int J Mol Sci; 2015 Oct; 16(10):23695-722. PubMed ID: 26457706 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis. Inturi B; Pujar GV; Purohit MN Arch Pharm (Weinheim); 2016 Nov; 349(11):817-826. PubMed ID: 27775177 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Schroeder EK; Basso LA; Santos DS; de Souza ON Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576 [TBL] [Abstract][Full Text] [Related]
8. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
9. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL; Arnaud P; Delaine T; Bernardes-Génisson V; Meunier B; Bernadou J J Mol Graph Model; 2008 Nov; 27(4):536-45. PubMed ID: 18955002 [TBL] [Abstract][Full Text] [Related]
10. Rational design of InhA inhibitors in the class of diphenyl ether derivatives as potential anti-tubercular agents using molecular dynamics simulations. Kamsri P; Koohatammakun N; Srisupan A; Meewong P; Punkvang A; Saparpakorn P; Hannongbua S; Wolschann P; Prueksaaroon S; Leartsakulpanich U; Pungpo P SAR QSAR Environ Res; 2014; 25(6):473-88. PubMed ID: 24785640 [TBL] [Abstract][Full Text] [Related]
11. Insights into the bonding pattern for characterizing the open and closed state of the substrate-binding loop in Mycobacterium tuberculosis InhA. Kumar V; Sobhia ME Future Med Chem; 2014 Apr; 6(6):605-16. PubMed ID: 24895891 [TBL] [Abstract][Full Text] [Related]
12. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. Stec J; Vilchèze C; Lun S; Perryman AL; Wang X; Freundlich JS; Bishai W; Jacobs WR; Kozikowski AP ChemMedChem; 2014 Nov; 9(11):2528-37. PubMed ID: 25165007 [TBL] [Abstract][Full Text] [Related]
13. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA). Khan AM; Shawon J; Halim MA J Mol Graph Model; 2017 Oct; 77():386-398. PubMed ID: 28957755 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. He X; Alian A; Ortiz de Montellano PR Bioorg Med Chem; 2007 Nov; 15(21):6649-58. PubMed ID: 17723305 [TBL] [Abstract][Full Text] [Related]
15. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Kouman KC; Keita M; Kre N'Guessan R; Owono Owono LC; Megnassan E; Frecer V; Miertus S Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554227 [TBL] [Abstract][Full Text] [Related]
16. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Rawat R; Whitty A; Tonge PJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Parikh SL; Xiao G; Tonge PJ Biochemistry; 2000 Jul; 39(26):7645-50. PubMed ID: 10869170 [TBL] [Abstract][Full Text] [Related]
18. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. am Ende CW; Knudson SE; Liu N; Childs J; Sullivan TJ; Boyne M; Xu H; Gegina Y; Knudson DL; Johnson F; Peloquin CA; Slayden RA; Tonge PJ Bioorg Med Chem Lett; 2008 May; 18(10):3029-33. PubMed ID: 18457948 [TBL] [Abstract][Full Text] [Related]
20. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]