These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34677941)

  • 1. Spontaneous Cleavage at Glu and Gln Residues in Long-Lived Proteins.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    ACS Chem Biol; 2021 Nov; 16(11):2244-2254. PubMed ID: 34677941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of protein cleavage at asparagine leading to protein-protein cross-links.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2019 Dec; 476(24):3817-3834. PubMed ID: 31794011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous protein-protein crosslinking at glutamine and glutamic acid residues in long-lived proteins.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2021 Jan; 478(2):327-339. PubMed ID: 33345277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleavage C-terminal to Asp leads to covalent crosslinking of long-lived human proteins.
    Wang Z; Friedrich MG; Truscott RJW; Schey KL
    Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):831-839. PubMed ID: 31226490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous cross-linking of proteins at aspartate and asparagine residues is mediated via a succinimide intermediate.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2018 Oct; 475(20):3189-3200. PubMed ID: 30181147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular signatures of long-lived proteins: autolytic cleavage adjacent to serine residues.
    Su SP; Lyons B; Friedrich M; McArthur JD; Song X; Xavier D; Truscott RJ; Aquilina JA
    Aging Cell; 2012 Dec; 11(6):1125-7. PubMed ID: 22805275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses.
    Fujii N; Sakaue H; Sasaki H; Fujii N
    J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision-induced fragmentations of the (M-H)- parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages.
    Bowie JH; Brinkworth CS; Dua S
    Mass Spectrom Rev; 2002; 21(2):87-107. PubMed ID: 12373746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The l-isoaspartate modification within protein fragments in the aging lens can promote protein aggregation.
    Warmack RA; Shawa H; Liu K; Lopez K; Loo JA; Horwitz J; Clarke SG
    J Biol Chem; 2019 Aug; 294(32):12203-12219. PubMed ID: 31239355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage.
    Hanson SR; Hasan A; Smith DL; Smith JB
    Exp Eye Res; 2000 Aug; 71(2):195-207. PubMed ID: 10930324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent deamidation of lifelong proteins in the human lens.
    Hains PG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3107-14. PubMed ID: 20053973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation of peptides in aerobic nitric oxide solution by a nitrosative pathway.
    Kong L; Saavedra JE; Buzard GS; Xu X; Hood BL; Conrads TP; Veenstra TD; Keefer LK
    Nitric Oxide; 2006 Mar; 14(2):144-51. PubMed ID: 16249103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleavage of beta crystallins during maturation of bovine lens.
    Shih M; Lampi KJ; Shearer TR; David LL
    Mol Vis; 1998 Feb; 4():4. PubMed ID: 9485487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during aging.
    Kamei A; Iwase H; Masuda K
    Biochem Biophys Res Commun; 1997 Feb; 231(2):373-8. PubMed ID: 9070282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates.
    Wang Z; Lyons B; Truscott RJ; Schey KL
    Aging Cell; 2014 Apr; 13(2):226-34. PubMed ID: 24134651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.