BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34677944)

  • 1. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes.
    Shefer I; Peer-Haim O; Leifman O; Epsztein R
    Environ Sci Technol; 2021 Nov; 55(21):14863-14875. PubMed ID: 34677944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
    Shefer I; Lopez K; Straub AP; Epsztein R
    Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of Anion-Cation Coupling Transport and Dehydration-Induced Ion-Membrane Interaction in Precise Separation of Ions by Nanofiltration Membranes.
    Zhai X; Wang YL; Dai R; Li X; Wang Z
    Environ Sci Technol; 2022 Oct; 56(19):14069-14079. PubMed ID: 36126287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the membrane exclusion mechanism on phosphate scaling during synthetic effluent desalination.
    Kaganovich M; Zhang W; Freger V; Bernstein R
    Water Res; 2019 Sep; 161():381-391. PubMed ID: 31226537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Barriers for Steroid Hormone Transport in Nanofiltration.
    Allouzi M; Imbrogno A; Schäfer AI
    Environ Sci Technol; 2022 Dec; 56(23):16811-16821. PubMed ID: 36367435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrapore energy barriers govern ion transport and selectivity of desalination membranes.
    Zhou X; Wang Z; Epsztein R; Zhan C; Li W; Fortner JD; Pham TA; Kim JH; Elimelech M
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination.
    Chan WF; Chen HY; Surapathi A; Taylor MG; Shao X; Marand E; Johnson JK
    ACS Nano; 2013 Jun; 7(6):5308-19. PubMed ID: 23705642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies.
    Gui L; Dong J; Fang W; Zhang S; Zhou K; Zhu Y; Zhang Y; Jin J
    Nano Lett; 2020 Aug; 20(8):5821-5829. PubMed ID: 32628856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-off between Endocrine-Disrupting Compound Removal and Water Permeance of the Polyamide Nanofiltration Membrane: Phenomenon and Molecular Insights.
    Chen J; Wang T; Dai R; Wu Z; Wang Z
    Environ Sci Technol; 2024 May; 58(21):9416-9426. PubMed ID: 38662937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.
    Sanyal O; Lee I
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion implantation: effect on flux and rejection properties of NF membranes.
    Abitoye JO; Mukherjee JP; Jones K
    Environ Sci Technol; 2005 Sep; 39(17):6487-93. PubMed ID: 16190203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.
    Freger V
    Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes.
    Wang L; Cao T; Pataroque KE; Kaneda M; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2023 Mar; 57(9):3930-3939. PubMed ID: 36815574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.