These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34677971)
1. Origins of Acid-Gas Stability Behavior in Zeolitic Imidazolate Frameworks: The Unique High Stability of ZIF-71. Cui K; Bhattacharyya S; Nair S; Schmidt JR J Am Chem Soc; 2021 Nov; 143(43):18061-18072. PubMed ID: 34677971 [TBL] [Abstract][Full Text] [Related]
2. Linker-Doped Zeolitic Imidazolate Frameworks (ZIFs) and Their Ultrathin Membranes for Tunable Gas Separations. Hillman F; Jeong HK ACS Appl Mater Interfaces; 2019 May; 11(20):18377-18385. PubMed ID: 31046223 [TBL] [Abstract][Full Text] [Related]
3. Kinetic Model of Acid Gas Induced Defect Propagation in Zeolitic Imidazolate Frameworks. Cui K; Nair S; Sholl DS; Schmidt JR J Phys Chem Lett; 2022 Jul; 13(28):6541-6548. PubMed ID: 35829725 [TBL] [Abstract][Full Text] [Related]
4. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Banerjee R; Phan A; Wang B; Knobler C; Furukawa H; O'Keeffe M; Yaghi OM Science; 2008 Feb; 319(5865):939-43. PubMed ID: 18276887 [TBL] [Abstract][Full Text] [Related]
5. Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and n-Butane/i-Butane Separations. Hillman F; Hamid MRA; Krokidas P; Moncho S; Brothers EN; Economou IG; Jeong HK Angew Chem Int Ed Engl; 2021 Apr; 60(18):10103-10111. PubMed ID: 33620755 [TBL] [Abstract][Full Text] [Related]
6. Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability. Zhao P; Bennett TD; Casati NP; Lampronti GI; Moggach SA; Redfern SA Dalton Trans; 2015 Mar; 44(10):4498-503. PubMed ID: 25649463 [TBL] [Abstract][Full Text] [Related]
7. Large Cages of Zeolitic Imidazolate Frameworks. Wang H; Pei X; Kalmutzki MJ; Yang J; Yaghi OM Acc Chem Res; 2022 Mar; 55(5):707-721. PubMed ID: 35170938 [TBL] [Abstract][Full Text] [Related]
8. The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. Ding L; Yazaydin AO Phys Chem Chem Phys; 2013 Jul; 15(28):11856-61. PubMed ID: 23764716 [TBL] [Abstract][Full Text] [Related]
9. Mechano-chemical stability and water effect on gas selectivity in mixed-metal zeolitic imidazolate frameworks: a systematic investigation from van der Waals corrected density functional theory. Dang DT; Nguyen HT; Thoai N; Kuo JL; Nguyen NTT; Nguyen-Manh D Phys Chem Chem Phys; 2020 Jan; 22(3):1598-1610. PubMed ID: 31894782 [TBL] [Abstract][Full Text] [Related]
10. Recovery of Acid-Gas-Degraded Zeolitic Imidazolate Frameworks by Solvent-Assisted Crystal Redemption (SACRed). Jayachandrababu KC; Bhattacharyya S; Chiang Y; Sholl DS; Nair S ACS Appl Mater Interfaces; 2017 Oct; 9(40):34597-34602. PubMed ID: 28949125 [TBL] [Abstract][Full Text] [Related]
11. Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties. Ban Y; Li Y; Peng Y; Jin H; Jiao W; Liu X; Yang W Chemistry; 2014 Sep; 20(36):11402-9. PubMed ID: 25056685 [TBL] [Abstract][Full Text] [Related]
12. Core-Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. Panchariya DK; Rai RK; Anil Kumar E; Singh SK ACS Omega; 2018 Jan; 3(1):167-175. PubMed ID: 31457885 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of ZIF-93/11 Hybrid Nanoparticles via Post-Synthetic Modification of ZIF-93 and Their Use for H Sánchez-Laínez J; Zornoza B; Orsi AF; Łozińska MM; Dawson DM; Ashbrook SE; Francis SM; Wright PA; Benoit V; Llewellyn PL; Téllez C; Coronas J Chemistry; 2018 Aug; 24(43):11211-11219. PubMed ID: 29799661 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Phan A; Doonan CJ; Uribe-Romo FJ; Knobler CB; O'Keeffe M; Yaghi OM Acc Chem Res; 2010 Jan; 43(1):58-67. PubMed ID: 19877580 [TBL] [Abstract][Full Text] [Related]
15. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks. Baxter EF; Bennett TD; Mellot-Draznieks C; Gervais C; Blanc F; Cheetham AK Phys Chem Chem Phys; 2015 Oct; 17(38):25191-6. PubMed ID: 26351979 [TBL] [Abstract][Full Text] [Related]
16. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Wang B; Côté AP; Furukawa H; O'Keeffe M; Yaghi OM Nature; 2008 May; 453(7192):207-11. PubMed ID: 18464739 [TBL] [Abstract][Full Text] [Related]
17. Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications. Kaneti YV; Dutta S; Hossain MSA; Shiddiky MJA; Tung KL; Shieh FK; Tsung CK; Wu KC; Yamauchi Y Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833624 [TBL] [Abstract][Full Text] [Related]
19. Flexible and Transferable ab Initio Force Field for Zeolitic Imidazolate Frameworks: ZIF-FF. Weng T; Schmidt JR J Phys Chem A; 2019 Apr; 123(13):3000-3012. PubMed ID: 30835124 [TBL] [Abstract][Full Text] [Related]
20. Improving Ethane/Ethylene Separation Performance under Humid Conditions by Spatially Modified Zeolitic Imidazolate Frameworks. Luo D; Peng YL; Xie M; Li M; Bezrukov AA; Zuo T; Wang XZ; Wu Y; Li YY; Lowe AR; Chorążewski MA; Grosu Y; Zhang Z; Zaworotko MJ; Zhou XP; Li D ACS Appl Mater Interfaces; 2022 Mar; 14(9):11547-11558. PubMed ID: 35191666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]