These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34677998)
1. Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality. Zhang Y; Xia J; Jiang B Phys Rev Lett; 2021 Oct; 127(15):156002. PubMed ID: 34677998 [TBL] [Abstract][Full Text] [Related]
2. Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing. Xia J; Zhang Y; Jiang B J Phys Chem A; 2023 Nov; 127(46):9874-9883. PubMed ID: 37943102 [TBL] [Abstract][Full Text] [Related]
3. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. Zhang Y; Hu C; Jiang B J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157 [TBL] [Abstract][Full Text] [Related]
4. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. Zhang Y; Xia J; Jiang B J Chem Phys; 2022 Mar; 156(11):114801. PubMed ID: 35317591 [TBL] [Abstract][Full Text] [Related]
5. Accelerating atomistic simulations with piecewise machine-learned Zhang Y; Hu C; Jiang B Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743 [TBL] [Abstract][Full Text] [Related]
6. Representing local atomic environment using descriptors based on local correlations. Samanta A J Chem Phys; 2018 Dec; 149(24):244102. PubMed ID: 30599737 [TBL] [Abstract][Full Text] [Related]
10. Universal machine learning for the response of atomistic systems to external fields. Zhang Y; Jiang B Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998 [TBL] [Abstract][Full Text] [Related]
11. Unified theory of atom-centered representations and message-passing machine-learning schemes. Nigam J; Pozdnyakov S; Fraux G; Ceriotti M J Chem Phys; 2022 May; 156(20):204115. PubMed ID: 35649823 [TBL] [Abstract][Full Text] [Related]
12. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials. Zaverkin V; Kästner J J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968 [TBL] [Abstract][Full Text] [Related]
14. A new embedded-atom method approach based on the pth moment approximation. Wang K; Zhu W; Xiao S; Chen J; Hu W J Phys Condens Matter; 2016 Dec; 28(50):505201. PubMed ID: 27758982 [TBL] [Abstract][Full Text] [Related]
15. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials. Jinnouchi R; Karsai F; Verdi C; Asahi R; Kresse G J Chem Phys; 2020 Jun; 152(23):234102. PubMed ID: 32571051 [TBL] [Abstract][Full Text] [Related]
16. E(n)-Equivariant cartesian tensor message passing interatomic potential. Wang J; Wang Y; Zhang H; Yang Z; Liang Z; Shi J; Wang HT; Xing D; Sun J Nat Commun; 2024 Sep; 15(1):7607. PubMed ID: 39218987 [TBL] [Abstract][Full Text] [Related]
17. A novel approach to describe chemical environments in high-dimensional neural network potentials. Kocer E; Mason JK; Erturk H J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106 [TBL] [Abstract][Full Text] [Related]
18. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding. Ko TW; Finkler JA; Goedecker S; Behler J J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440 [TBL] [Abstract][Full Text] [Related]
19. Efficient implementation of atom-density representations. Musil F; Veit M; Goscinski A; Fraux G; Willatt MJ; Stricker M; Junge T; Ceriotti M J Chem Phys; 2021 Mar; 154(11):114109. PubMed ID: 33752353 [TBL] [Abstract][Full Text] [Related]