These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34677998)
21. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. Nguyen TT; Székely E; Imbalzano G; Behler J; Csányi G; Ceriotti M; Götz AW; Paesani F J Chem Phys; 2018 Jun; 148(24):241725. PubMed ID: 29960316 [TBL] [Abstract][Full Text] [Related]
22. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors. Andersen M; Reuter K Acc Chem Res; 2021 Jun; 54(12):2741-2749. PubMed ID: 34080415 [TBL] [Abstract][Full Text] [Related]
23. Fast representation based on a double orientation histogram for local image descriptors. Kang W; Chen X IEEE Trans Image Process; 2015 Oct; 24(10):2915-27. PubMed ID: 25897986 [TBL] [Abstract][Full Text] [Related]
24. A new kind of atlas of zeolite building blocks. Helfrecht BA; Semino R; Pireddu G; Auerbach SM; Ceriotti M J Chem Phys; 2019 Oct; 151(15):154112. PubMed ID: 31640382 [TBL] [Abstract][Full Text] [Related]
25. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation. Fu Y; Song JH J Chem Phys; 2014 Aug; 141(5):054108. PubMed ID: 25106571 [TBL] [Abstract][Full Text] [Related]
26. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration. Kang PL; Shang C; Liu ZP Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999 [TBL] [Abstract][Full Text] [Related]
27. q-pac: A Python package for machine learned charge equilibration models. Vondrák M; Reuter K; Margraf JT J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37530116 [TBL] [Abstract][Full Text] [Related]
28. Global Neural Network Potential with Explicit Many-Body Functions for Improved Descriptions of Complex Potential Energy Surface. Kang PL; Yang ZX; Shang C; Liu ZP J Chem Theory Comput; 2023 Nov; 19(21):7972-7981. PubMed ID: 37856312 [TBL] [Abstract][Full Text] [Related]
29. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks. Stöhr M; Medrano Sandonas L; Tkatchenko A J Phys Chem Lett; 2020 Aug; 11(16):6835-6843. PubMed ID: 32787209 [TBL] [Abstract][Full Text] [Related]
30. Performance and Cost Assessment of Machine Learning Interatomic Potentials. Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773 [TBL] [Abstract][Full Text] [Related]
32. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752 [TBL] [Abstract][Full Text] [Related]
33. Recursive evaluation and iterative contraction of N-body equivariant features. Nigam J; Pozdnyakov S; Ceriotti M J Chem Phys; 2020 Sep; 153(12):121101. PubMed ID: 33003734 [TBL] [Abstract][Full Text] [Related]
34. Quantum nonlocality. Detecting nonlocality in many-body quantum states. Tura J; Augusiak R; Sainz AB; Vértesi T; Lewenstein M; Acín A Science; 2014 Jun; 344(6189):1256-8. PubMed ID: 24926014 [TBL] [Abstract][Full Text] [Related]
35. Efficient representation of quantum many-body states with deep neural networks. Gao X; Duan LM Nat Commun; 2017 Sep; 8(1):662. PubMed ID: 28939812 [TBL] [Abstract][Full Text] [Related]
36. Improve the performance of machine-learning potentials by optimizing descriptors. Gao H; Wang J; Sun J J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049 [TBL] [Abstract][Full Text] [Related]