These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34678147)

  • 1. Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements.
    Natraj N; Silversmith DB; Chang EF; Ganguly K
    Neuron; 2022 Jan; 110(1):154-174.e12. PubMed ID: 34678147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed yet compartmentalized neural dynamics of hand actions.
    Scherberger H
    Neuron; 2022 Jan; 110(1):10-11. PubMed ID: 34990575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into reducing anthropomorphic hand degrees of freedom while maintaining human hand grasping functions.
    Zarzoura M; Del Moral P; Awad MI; Tolbah FA
    Proc Inst Mech Eng H; 2019 Feb; 233(2):279-292. PubMed ID: 30599790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed and Localized Dynamics Emerge in the Mouse Neocortex during Reach-to-Grasp Behavior.
    Quarta E; Scaglione A; Lucchesi J; Sacconi L; Allegra Mascaro AL; Pavone FS
    J Neurosci; 2022 Feb; 42(5):777-788. PubMed ID: 34732524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy.
    Theverapperuma LS; Hendrix CM; Mason CR; Ebner TJ
    Exp Brain Res; 2006 Mar; 169(4):433-48. PubMed ID: 16292639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State anxiety disorganizes finger movements during musical performance.
    Kotani S; Furuya S
    J Neurophysiol; 2018 Aug; 120(2):439-451. PubMed ID: 29641301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural coordination of bilateral power and precision finger movements.
    Dietz V
    Eur J Neurosci; 2021 Dec; 54(12):8249-8255. PubMed ID: 32682343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements.
    Flindall JW; Gonzalez CL
    J Neurophysiol; 2016 Nov; 116(5):2105-2113. PubMed ID: 27512020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile input of the hand and the control of reaching to grasp movements.
    Gentilucci M; Toni I; Daprati E; Gangitano M
    Exp Brain Res; 1997 Mar; 114(1):130-7. PubMed ID: 9125458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking Individual Movements to a Skilled Repertoire: Fast Modulation of Motor Synergies by Repetition of Stereotyped Movements.
    Fricke C; Gentner R; Alizadeh J; Classen J
    Cereb Cortex; 2020 Mar; 30(3):1185-1198. PubMed ID: 31386110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network model for coordination of hand gesture during reach to grasp.
    Vilaplana JM; Coronado JL
    Neural Netw; 2006 Jan; 19(1):12-30. PubMed ID: 16300927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand Dexterity Impairment in Patients with Cervical Myelopathy: A New Quantitative Assessment Using a Natural Prehension Movement.
    Omori M; Shibuya S; Nakajima T; Endoh T; Suzuki S; Irie S; Ariyasu R; Unenaka S; Sano H; Igarashi K; Ichimura S; Ohki Y
    Behav Neurol; 2018; 2018():5138234. PubMed ID: 30073036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hand function: peripheral and central constraints on performance.
    Schieber MH; Santello M
    J Appl Physiol (1985); 2004 Jun; 96(6):2293-300. PubMed ID: 15133016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.
    Xu J; Mawase F; Schieber MH
    Physiol Rev; 2024 Jul; 104(3):983-1020. PubMed ID: 38385888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements.
    Aggarwal V; Mollazadeh M; Davidson AG; Schieber MH; Thakor NV
    J Neurophysiol; 2013 Jun; 109(12):3067-81. PubMed ID: 23536714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of prehension in hemiparetic cerebral palsy: similarities and differences between the ipsi- and contra-lesional sides of the body.
    Steenbergen B; van der Kamp J
    Dev Med Child Neurol; 2004 May; 46(5):325-32. PubMed ID: 15132263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.