These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 34678208)

  • 1. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes.
    Olschok K; Han L; de Toledo MAS; Böhnke J; Graßhoff M; Costa IG; Theocharides A; Maurer A; Schüler HM; Buhl EM; Pannen K; Baumeister J; Kalmer M; Gupta S; Boor P; Gezer D; Brümmendorf TH; Zenke M; Chatain N; Koschmieder S
    Stem Cell Reports; 2021 Nov; 16(11):2768-2783. PubMed ID: 34678208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skewed megakaryopoiesis in human induced pluripotent stem cell-derived haematopoietic progenitor cells harbouring calreticulin mutations.
    Takei H; Edahiro Y; Mano S; Masubuchi N; Mizukami Y; Imai M; Morishita S; Misawa K; Ochiai T; Tsuneda S; Endo H; Nakamura S; Eto K; Ohsaka A; Araki M; Komatsu N
    Br J Haematol; 2018 Jun; 181(6):791-802. PubMed ID: 29741776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion.
    Han L; Schubert C; Köhler J; Schemionek M; Isfort S; Brümmendorf TH; Koschmieder S; Chatain N
    J Hematol Oncol; 2016 May; 9(1):45. PubMed ID: 27177927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms.
    Di Buduo CA; Abbonante V; Marty C; Moccia F; Rumi E; Pietra D; Soprano PM; Lim D; Cattaneo D; Iurlo A; Gianelli U; Barosi G; Rosti V; Plo I; Cazzola M; Balduini A
    Blood; 2020 Jan; 135(2):133-144. PubMed ID: 31697806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloproliferative Neoplasms With Calreticulin Mutations Exhibit Distinctive Morphologic Features.
    Loghavi S; Bueso-Ramos CE; Kanagal-Shamanna R; Ok CY; Salim AA; Routbort MJ; Mehrotra M; Verstovsek S; Medeiros LJ; Luthra R; Patel KP
    Am J Clin Pathol; 2016 Mar; 145(3):418-27. PubMed ID: 27124925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.
    Araki M; Yang Y; Masubuchi N; Hironaka Y; Takei H; Morishita S; Mizukami Y; Kan S; Shirane S; Edahiro Y; Sunami Y; Ohsaka A; Komatsu N
    Blood; 2016 Mar; 127(10):1307-16. PubMed ID: 26817954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms.
    Secardin L; Gomez Limia C; da Silva-Benedito S; Lordier L; El-Khoury M; Marty C; Ianotto JC; Raslova H; Constantinescu SN; Bonamino MH; Vainchenker W; Monte-Mor B; Di Stefano A; Plo I
    Hemasphere; 2021 Jul; 5(7):e593. PubMed ID: 34131633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.
    Marty C; Pecquet C; Nivarthi H; El-Khoury M; Chachoua I; Tulliez M; Villeval JL; Raslova H; Kralovics R; Constantinescu SN; Plo I; Vainchenker W
    Blood; 2016 Mar; 127(10):1317-24. PubMed ID: 26608331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Megakaryocytes, erythropoietic and granulopoietic cells express CAL2 antibody in myeloproliferative neoplasms carrying CALR gene mutations.
    Ali H; Puccio I; Akarca AU; Bob R; Pomplun S; Keong Wong W; Gupta R; Sekhar M; Lambert J; Al-Masri H; Stein H; Marafioti T
    Int J Exp Pathol; 2021 Feb; 102(1):45-50. PubMed ID: 32929772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.
    Chachoua I; Pecquet C; El-Khoury M; Nivarthi H; Albu RI; Marty C; Gryshkova V; Defour JP; Vertenoeil G; Ngo A; Koay A; Raslova H; Courtoy PJ; Choong ML; Plo I; Vainchenker W; Kralovics R; Constantinescu SN
    Blood; 2016 Mar; 127(10):1325-35. PubMed ID: 26668133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation.
    Kollmann K; Warsch W; Gonzalez-Arias C; Nice FL; Avezov E; Milburn J; Li J; Dimitropoulou D; Biddie S; Wang M; Poynton E; Colzani M; Tijssen MR; Anand S; McDermott U; Huntly B; Green T
    Leukemia; 2017 Apr; 31(4):934-944. PubMed ID: 27740635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Imai M; Araki M; Komatsu N
    Int J Hematol; 2017 Jun; 105(6):743-747. PubMed ID: 28470469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
    Elf S; Abdelfattah NS; Chen E; Perales-Patón J; Rosen EA; Ko A; Peisker F; Florescu N; Giannini S; Wolach O; Morgan EA; Tothova Z; Losman JA; Schneider RK; Al-Shahrour F; Mullally A
    Cancer Discov; 2016 Apr; 6(4):368-81. PubMed ID: 26951227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAL2 Immunohistochemical Staining Accurately Identifies CALR Mutations in Myeloproliferative Neoplasms.
    Nomani L; Bodo J; Zhao X; Durkin L; Loghavi S; Hsi ED
    Am J Clin Pathol; 2016 Oct; 146(4):431-8. PubMed ID: 27686170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Mutated Calreticulin in the Pathogenesis of
    Vadeikienė R; Jakštys B; Laukaitienė D; Šatkauskas S; Juozaitytė E; Ugenskienė R
    Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megakaryocytic hyperplasia in myeloproliferative neoplasms is driven by disordered proliferative, apoptotic and epigenetic mechanisms.
    Malherbe JA; Fuller KA; Arshad A; Nangalia J; Romeo G; Hall SL; Meehan KS; Guo B; Howman R; Erber WN
    J Clin Pathol; 2016 Feb; 69(2):155-63. PubMed ID: 26290261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations.
    Yasuda S; Aoyama S; Yoshimoto R; Li H; Watanabe D; Akiyama H; Yamamoto K; Fujiwara T; Najima Y; Doki N; Sakaida E; Edahiro Y; Imai M; Araki M; Komatsu N; Miura O; Kawamata N
    Int J Hematol; 2021 Oct; 114(4):424-440. PubMed ID: 34165774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
    Edahiro Y; Araki M; Komatsu N
    Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody.
    Tvorogov D; Thompson-Peach CAL; Foßelteder J; Dottore M; Stomski F; Onnesha SA; Lim K; Moretti PAB; Pitson SM; Ross DM; Reinisch A; Thomas D; Lopez AF
    EMBO Rep; 2022 Apr; 23(4):e52904. PubMed ID: 35156745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.