These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34678387)

  • 1. Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion.
    Sharafkhani N; Kouzani AZ; Adams SD; Long JM; Lissorgues G; Rousseau L; Orwa JO
    J Neurosci Methods; 2022 Jan; 365():109388. PubMed ID: 34678387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime.
    Dryg ID; Ward MP; Qing KY; Mei H; Schaffer JE; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):562-71. PubMed ID: 25706720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insertion mechanics of amorphous SiC ultra-micro scale neural probes.
    Geramifard N; Dousti B; Nguyen C; Abbott J; Cogan SF; Varner VD
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35263724
    [No Abstract]   [Full Text] [Related]  

  • 6. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion.
    Arafat MA; Rubin LN; Jefferys JGR; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1724-1731. PubMed ID: 31380762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagenase-aided insertion of intracortical microelectrode arrays: evaluation of insertion force and chronic recording performance.
    Paralikar KJ; Lawrence JK; Clement RS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2958-61. PubMed ID: 17946994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface.
    Tian HC; Liu JQ; Kang XY; Tang LJ; Wang MH; Ji BW; Yang B; Wang XL; Chen X; Yang CS
    Sci Rep; 2016 May; 6():26910. PubMed ID: 27229174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes.
    Sommakia S; Rickus JL; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7139-42. PubMed ID: 19963693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical analysis of silicon microelectrode-induced strain in the brain.
    Lee H; Bellamkonda RV; Sun W; Levenston ME
    J Neural Eng; 2005 Dec; 2(4):81-9. PubMed ID: 16317231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The noise and impedance of microelectrodes.
    Mierzejewski M; Steins H; Kshirsagar P; Jones PD
    J Neural Eng; 2020 Oct; 17(5):052001. PubMed ID: 33055360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term
    Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.