These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34678487)

  • 1. Configuring intracortical microelectrode arrays and stimulus parameters to minimize neuron loss during prolonged intracortical electrical stimulation.
    McCreery D; Han M; Pikov V; Miller C
    Brain Stimul; 2021; 14(6):1553-1562. PubMed ID: 34678487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array.
    Rousche PJ; Normann RA
    IEEE Trans Rehabil Eng; 1999 Mar; 7(1):56-68. PubMed ID: 10188608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat.
    McCreery DB; Agnew WF; Bullara LA
    Ann Biomed Eng; 2002 Jan; 30(1):107-19. PubMed ID: 11874134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex.
    McCreery D; Cogan S; Kane S; Pikov V
    J Neural Eng; 2016 Jun; 13(3):036012. PubMed ID: 27108712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity evoked by chronically implanted intracortical microelectrodes.
    McCreery DB; Bullara LA; Agnew WF
    Exp Neurol; 1986 Apr; 92(1):147-61. PubMed ID: 3956646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex.
    Overstreet CK; Klein JD; Helms Tillery SI
    J Neural Eng; 2013 Dec; 10(6):066016. PubMed ID: 24280531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex.
    McCreery D; Pikov V; Troyk PR
    J Neural Eng; 2010 Jun; 7(3):036005. PubMed ID: 20460692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histopathologic evaluation of prolonged intracortical electrical stimulation.
    Agnew WF; Yuen TG; McCreery DB; Bullara LA
    Exp Neurol; 1986 Apr; 92(1):162-85. PubMed ID: 3956647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation.
    Stieger KC; Eles JR; Ludwig KA; Kozai TDY
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35263736
    [No Abstract]   [Full Text] [Related]  

  • 10. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation.
    Yazdan-Shahmorad A; Lehmkuhle MJ; Gage GJ; Marzullo TC; Parikh H; Miriani RM; Kipke DR
    J Neural Eng; 2011 Aug; 8(4):046018. PubMed ID: 21690656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes.
    Liu X; McCreery DB; Carter RR; Bullara LA; Yuen TG; Agnew WF
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):315-26. PubMed ID: 10498377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus parameters affecting tissue injury during microstimulation in the cochlear nucleus of the cat.
    McCreery DB; Yuen TG; Agnew WF; Bullara LA
    Hear Res; 1994 Jun; 77(1-2):105-15. PubMed ID: 7928722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracortical Microstimulation Modulates Cortical Induced Responses.
    Voigt MB; Yusuf PA; Kral A
    J Neurosci; 2018 Sep; 38(36):7774-7786. PubMed ID: 30054394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracortical microstimulation of neurons in the visual cortex of the cat.
    Ronner SF; Foote WE; Pollen DA
    Electroencephalogr Clin Neurophysiol; 1981 Oct; 52(4):375-7. PubMed ID: 6169515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 18. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays.
    Nanivadekar AC; Ayers CA; Gaunt RA; Weber DJ; Fisher LE
    J Neural Eng; 2019 Dec; 17(1):016011. PubMed ID: 31577993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation with chronically implanted microelectrodes in the cochlear nucleus of the cat: histologic and physiologic effects.
    McCreery DB; Yuen TG; Agnew WF; Bullara LA
    Hear Res; 1992 Sep; 62(1):42-56. PubMed ID: 1429250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic microstimulation in the feline ventral cochlear nucleus: physiologic and histologic effects.
    McCreery DB; Yuen TG; Bullara LA
    Hear Res; 2000 Nov; 149(1-2):223-38. PubMed ID: 11033261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.