These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 34678561)
21. Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning. Chen C; Wang Z; Ge Y; Liang R; Hou D; Tao J; Yan B; Zheng W; Velichkova R; Chen G Bioresour Technol; 2023 Jun; 377():128893. PubMed ID: 36931444 [TBL] [Abstract][Full Text] [Related]
22. Inversion of Soil Organic Matter Content Based on Improved Convolutional Neural Network. Ma L; Zhao L; Cao L; Li D; Chen G; Han Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298127 [TBL] [Abstract][Full Text] [Related]
23. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Blaine AC; Rich CD; Sedlacko EM; Hundal LS; Kumar K; Lau C; Mills MA; Harris KM; Higgins CP Environ Sci Technol; 2014 Jul; 48(14):7858-65. PubMed ID: 24918303 [TBL] [Abstract][Full Text] [Related]
24. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches. Ließ M; Schmidt J; Glaser B PLoS One; 2016; 11(4):e0153673. PubMed ID: 27128736 [TBL] [Abstract][Full Text] [Related]
25. Organic Contaminants from Sewage Sludge Applied to Agricultural Soils. False Alarm Regarding Possible Problems for Food Safety? (8 pp). Grøn C Environ Sci Pollut Res Int; 2007 Jan; 14 Suppl 1():53-60. PubMed ID: 21959541 [TBL] [Abstract][Full Text] [Related]
26. Modelling potentially toxic elements in forest soils with vis-NIR spectra and learning algorithms. Gholizadeh A; Saberioon M; Ben-Dor E; Viscarra Rossel RA; Borůvka L Environ Pollut; 2020 Dec; 267():115574. PubMed ID: 33254595 [TBL] [Abstract][Full Text] [Related]
27. Ensemble machine learning-based recommendation system for effective prediction of suitable agricultural crop cultivation. Hasan M; Marjan MA; Uddin MP; Afjal M; Kardy S; Ma S; Nam Y Front Plant Sci; 2023; 14():1234555. PubMed ID: 37636091 [TBL] [Abstract][Full Text] [Related]
28. Meta-analysis of engineered nanoparticles dynamic aggregation in freshwater-like systems using machine learning techniques. Yalezo N; Musee N J Environ Manage; 2023 Jul; 337():117739. PubMed ID: 36934506 [TBL] [Abstract][Full Text] [Related]
29. Machine Learning Models for the Hearing Impairment Prediction in Workers Exposed to Complex Industrial Noise: A Pilot Study. Zhao Y; Li J; Zhang M; Lu Y; Xie H; Tian Y; Qiu W Ear Hear; 2019; 40(3):690-699. PubMed ID: 30142102 [TBL] [Abstract][Full Text] [Related]
30. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Heddam S; Kisi O Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629 [TBL] [Abstract][Full Text] [Related]
31. Ensemble Machine Learning Approach Improves Predicted Spatial Variation of Surface Soil Organic Carbon Stocks in Data-Limited Northern Circumpolar Region. Mishra U; Gautam S; Riley WJ; Hoffman FM Front Big Data; 2020; 3():528441. PubMed ID: 33693410 [TBL] [Abstract][Full Text] [Related]
32. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data. Zhang XY; Huang Z; Su X; Siu A; Song Y; Zhang D; Fang Q PLoS One; 2020; 15(2):e0228645. PubMed ID: 32045452 [TBL] [Abstract][Full Text] [Related]
33. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Nguyen TT; Pham TD; Nguyen CT; Delfos J; Archibald R; Dang KB; Hoang NB; Guo W; Ngo HH Sci Total Environ; 2022 Jan; 804():150187. PubMed ID: 34517328 [TBL] [Abstract][Full Text] [Related]
34. Prediction of Oil Palm Yield Using Machine Learning in the Perspective of Fluctuating Weather and Soil Moisture Conditions: Evaluation of a Generic Workflow. Khan N; Kamaruddin MA; Ullah Sheikh U; Zawawi MH; Yusup Y; Bakht MP; Mohamed Noor N Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807648 [TBL] [Abstract][Full Text] [Related]
35. Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach. Srinivas S; Salah H Int J Med Inform; 2021 Jan; 145():104290. PubMed ID: 33099184 [TBL] [Abstract][Full Text] [Related]
37. The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use? Mourmouris P; Tzelves L; Feretzakis G; Kalles D; Manolitsis I; Berdempes M; Varkarakis I; Skolarikos A Arch Ital Urol Androl; 2021 Dec; 93(4):418-424. PubMed ID: 34933537 [TBL] [Abstract][Full Text] [Related]
38. Predicting Fine Spatial Scale Traffic Noise Using Mobile Measurements and Machine Learning. Yin X; Fallah-Shorshani M; McConnell R; Fruin S; Franklin M Environ Sci Technol; 2020 Oct; 54(20):12860-12869. PubMed ID: 32930589 [TBL] [Abstract][Full Text] [Related]
39. Machine learning algorithms realized soil stoichiometry prediction and its driver identification in intensive agroecosystems across a north-south transect of eastern China. Xu X; Xiao C; Dong Y; Zhan L; Bi R; Song M; Pan J; Xiong Z Sci Total Environ; 2024 Jan; 906():167488. PubMed ID: 37778551 [TBL] [Abstract][Full Text] [Related]
40. Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning. Yang H; Wang P; Chen A; Ye Y; Chen Q; Cui R; Zhang D Chemosphere; 2023 Feb; 313():137623. PubMed ID: 36565764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]