These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 34678561)

  • 41. Machine learning approach for predicting single cell lag time of Salmonella Enteritidis after heat and chlorine treatment.
    Lin Z; Qin X; Li J; Zohaib Aslam M; Sun T; Li Z; Wang X; Dong Q
    Food Res Int; 2022 Jun; 156():111132. PubMed ID: 35651007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of a metalearner to predict emergency medical services demand in an urban setting.
    Ramgopal S; Westling T; Siripong N; Salcido DD; Martin-Gill C
    Comput Methods Programs Biomed; 2021 Aug; 207():106201. PubMed ID: 34139474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-channel GCN ensembled machine learning model for molecular aqueous solubility prediction on a clean dataset.
    Deng C; Liang L; Xing G; Hua Y; Lu T; Zhang Y; Chen Y; Liu H
    Mol Divers; 2023 Jun; 27(3):1023-1035. PubMed ID: 35739374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting maturity and identifying key factors in organic waste composting using machine learning models.
    Wang N; Yang W; Wang B; Bai X; Wang X; Xu Q
    Bioresour Technol; 2024 May; 400():130663. PubMed ID: 38583671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Prediction of Cadmium Uptake Factor in Wheat Based on Machine Learning].
    Niu S; Li YL; Yang Y; Shang YP; Wang TQ; Chen WP
    Huan Jing Ke Xue; 2023 Jun; 44(6):3619-3626. PubMed ID: 37309976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department.
    Kuo YH; Chan NB; Leung JMY; Meng H; So AM; Tsoi KKF; Graham CA
    Int J Med Inform; 2020 Jul; 139():104143. PubMed ID: 32330853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models.
    Heydari S; Hoseinie SH; Bagherpour R
    Sci Rep; 2024 Apr; 14(1):8928. PubMed ID: 38637673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data.
    Srivastava AK; Safaei N; Khaki S; Lopez G; Zeng W; Ewert F; Gaiser T; Rahimi J
    Sci Rep; 2022 Feb; 12(1):3215. PubMed ID: 35217689
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning prediction of empirical polarity using SMILES encoding of organic solvents.
    Saini V
    Mol Divers; 2023 Oct; 27(5):2331-2343. PubMed ID: 36334165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of Soil Types and Salinity Using MODIS Terra Data and Machine Learning Techniques in Multiple Regions of Pakistan.
    Haq YU; Shahbaz M; Asif S; Ouahada K; Hamam H
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy.
    Wang Y; Li M; Ji R; Wang M; Zheng L
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery.
    Zhao B; Waterman RS; Urman RD; Gabriel RA
    J Med Syst; 2019 Jan; 43(2):32. PubMed ID: 30612192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth.
    Modabbernia A; Whalley HC; Glahn DC; Thompson PM; Kahn RS; Frangou S
    Hum Brain Mapp; 2022 Dec; 43(17):5126-5140. PubMed ID: 35852028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine learning models outperform manual result review for the identification of wrong blood in tube errors in complete blood count results.
    Farrell CL; Giannoutsos J
    Int J Lab Hematol; 2022 Jun; 44(3):497-503. PubMed ID: 35274468
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transfer learning for small molecule retention predictions.
    Osipenko S; Botashev K; Nikolaev E; Kostyukevich Y
    J Chromatogr A; 2021 May; 1644():462119. PubMed ID: 33845426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning.
    Batool D; Shahbaz M; Shahzad Asif H; Shaukat K; Alam TM; Hameed IA; Ramzan Z; Waheed A; Aljuaid H; Luo S
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35893629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models.
    Cipullo S; Snapir B; Prpich G; Campo P; Coulon F
    Chemosphere; 2019 Jan; 215():388-395. PubMed ID: 30347356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.