BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34678671)

  • 1. Increased Ventromedial Prefrontal Cortex Activity in Adolescence Benefits Prosocial Reinforcement Learning.
    Westhoff B; Blankenstein NE; Schreuders E; Crone EA; van Duijvenvoorde ACK
    Dev Cogn Neurosci; 2021 Dec; 52():101018. PubMed ID: 34678671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When Implicit Prosociality Trumps Selfishness: The Neural Valuation System Underpins More Optimal Choices When Learning to Avoid Harm to Others Than to Oneself.
    Lengersdorff LL; Wagner IC; Lockwood PL; Lamm C
    J Neurosci; 2020 Sep; 40(38):7286-7299. PubMed ID: 32839234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. l-DOPA and oxytocin influence the neurocomputational mechanisms of self-benefitting and prosocial reinforcement learning.
    Jansen M; Lockwood PL; Cutler J; de Bruijn ERA
    Neuroimage; 2023 Apr; 270():119983. PubMed ID: 36848972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurocomputational mechanisms of prosocial learning and links to empathy.
    Lockwood PL; Apps MA; Valton V; Viding E; Roiser JP
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9763-8. PubMed ID: 27528669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.
    Rothkirch M; Tonn J; Köhler S; Sterzer P
    Brain; 2017 Apr; 140(4):1147-1157. PubMed ID: 28334960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.
    van den Bos W; Cohen MX; Kahnt T; Crone EA
    Cereb Cortex; 2012 Jun; 22(6):1247-55. PubMed ID: 21817091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural and computational processes underlying dynamic changes in self-esteem.
    Will GJ; Rutledge RB; Moutoussis M; Dolan RJ
    Elife; 2017 Oct; 6():. PubMed ID: 29061228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gambling for self, friends, and antagonists: differential contributions of affective and social brain regions on adolescent reward processing.
    Braams BR; Peters S; Peper JS; Güroğlu B; Crone EA
    Neuroimage; 2014 Oct; 100():281-9. PubMed ID: 24945662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.
    Jocham G; Klein TA; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1606-13. PubMed ID: 21289169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Computational Account of Optimizing Social Predictions Reveals That Adolescents Are Conservative Learners in Social Contexts.
    Rosenblau G; Korn CW; Pelphrey KA
    J Neurosci; 2018 Jan; 38(4):974-988. PubMed ID: 29255008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.
    Jones RM; Somerville LH; Li J; Ruberry EJ; Powers A; Mehta N; Dyke J; Casey BJ
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):683-97. PubMed ID: 24550063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence.
    Davidow JY; Foerde K; Galván A; Shohamy D
    Neuron; 2016 Oct; 92(1):93-99. PubMed ID: 27710793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxytocin modulates neurocomputational mechanisms underlying prosocial reinforcement learning.
    Martins D; Lockwood P; Cutler J; Moran R; Paloyelis Y
    Prog Neurobiol; 2022 Jun; 213():102253. PubMed ID: 35248585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
    Leong YC; Radulescu A; Daniel R; DeWoskin V; Niv Y
    Neuron; 2017 Jan; 93(2):451-463. PubMed ID: 28103483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of reinforcement learning and social preferences in competitive bidding.
    van den Bos W; Talwar A; McClure SM
    J Neurosci; 2013 Jan; 33(5):2137-46. PubMed ID: 23365249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted reinforcement learning during post-error slowing in ADHD.
    Chevrier A; Bhaijiwala M; Lipszyc J; Cheyne D; Graham S; Schachar R
    PLoS One; 2019; 14(2):e0206780. PubMed ID: 30785885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems.
    Baram AB; Muller TH; Nili H; Garvert MM; Behrens TEJ
    Neuron; 2021 Feb; 109(4):713-723.e7. PubMed ID: 33357385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms.
    Klein-Flügge MC; Wittmann MK; Shpektor A; Jensen DEA; Rushworth MFS
    Nat Commun; 2019 Oct; 10(1):4835. PubMed ID: 31645545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia.
    Schenk LA; Sprenger C; Onat S; Colloca L; Büchel C
    J Neurosci; 2017 Oct; 37(40):9715-9723. PubMed ID: 28883019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reward and fictive prediction error signals in ventral striatum: asymmetry between factual and counterfactual processing.
    Santo-Angles A; Fuentes-Claramonte P; Argila-Plaza I; Guardiola-Ripoll M; Almodóvar-Payá C; Munuera J; McKenna PJ; Pomarol-Clotet E; Radua J
    Brain Struct Funct; 2021 Jun; 226(5):1553-1569. PubMed ID: 33839955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.