These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34678695)

  • 1. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and Stability of Ozone Nanobubbles in Freshwater Conditions.
    Soyluoglu M; Kim D; Karanfil T
    Environ Sci Technol; 2023 Dec; 57(51):21898-21907. PubMed ID: 38085154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors.
    Erdem CU; Ateia M; Liu C; Karanfil T
    Water Res; 2020 Oct; 184():116146. PubMed ID: 32726742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aeration and dissolution behavior of oxygen nanobubbles in water.
    Xue S; Zhang Y; Marhaba T; Zhang W
    J Colloid Interface Sci; 2022 Mar; 609():584-591. PubMed ID: 34815086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents.
    Prakash R; Lee J; Moon Y; Pradhan D; Kim SH; Lee HY; Lee J
    Langmuir; 2023 Feb; 39(5):1968-1986. PubMed ID: 36692411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical behaviors and toxic effects of ametryn during the UV/chlorine process.
    Yang W; Tang Y; Liu L; Peng X; Zhong Y; Chen Y; Huang Y
    Chemosphere; 2020 Feb; 240():124941. PubMed ID: 31726615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a restricted chlorine-dosing strategy for UV/chlorine and post-chlorination under different pH and UV irradiation wavelength conditions.
    Cheng S; Wu J; Zuo YT; Han YZ; Ji WX; Li Y; Huo ZL; Li AM; Li WT
    Chemosphere; 2020 Nov; 258():127393. PubMed ID: 32947669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous removal of chlorite and contaminants of emerging concern under UV photolysis: Hydroxyl radicals vs. chlorate formation.
    Wang J; Wu Y; Bu L; Zhu S; Zhang W; Zhou S; Gao N
    Water Res; 2021 Feb; 190():116708. PubMed ID: 33279746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry.
    Ruan X; Xiang Y; Shang C; Cheng S; Liu J; Hao Z; Yang X
    J Environ Sci (China); 2021 Apr; 102():24-36. PubMed ID: 33637249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of hydroxyl radical during chlorination of hydroxyphenols and natural organic matter extracts.
    Rodríguez EM; von Gunten U
    Water Res; 2020 Jun; 177():115691. PubMed ID: 32304908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination.
    Liu S; Oshita S; Kawabata S; Makino Y; Yoshimoto T
    Langmuir; 2016 Nov; 32(43):11295-11302. PubMed ID: 27259095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control.
    Yaparatne S; Morón-López J; Bouchard D; Garcia-Segura S; Apul OG
    Sci Total Environ; 2024 Jun; 931():172687. PubMed ID: 38663593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH on nano-bubble stability and transport in saturated porous media.
    Hamamoto S; Takemura T; Suzuki K; Nishimura T
    J Contam Hydrol; 2018 Jan; 208():61-67. PubMed ID: 29269033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities.
    Önnby L; Salhi E; McKay G; Rosario-Ortiz FL; von Gunten U
    Water Res; 2018 Nov; 144():64-75. PubMed ID: 30014980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.