BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 34678727)

  • 21. Myeloid-Derived Suppressor Cells in Sepsis.
    Schrijver IT; Théroude C; Roger T
    Front Immunol; 2019; 10():327. PubMed ID: 30873175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Blood Monocytic Myeloid Derived Suppressor Cells but Low Regulatory T Lymphocytes in Patients with Mild COVID-19.
    Jiménez-Cortegana C; Liró J; Palazón-Carrión N; Salamanca E; Sojo-Dorado J; de la Cruz-Merino L; Pascual Á; Rodríguez-Baño J; Sánchez-Margalet V
    Viral Immunol; 2021 Nov; 34(9):639-645. PubMed ID: 34529510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype.
    Trombetta AC; Farias GB; Gomes AMC; Godinho-Santos A; Rosmaninho P; Conceição CM; Laia J; Santos DF; Almeida ARM; Mota C; Gomes A; Serrano M; Veldhoen M; Sousa AE; Fernandes SM
    Front Immunol; 2021; 12():691725. PubMed ID: 34248984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity.
    Falck-Jones S; Vangeti S; Yu M; Falck-Jones R; Cagigi A; Badolati I; Österberg B; Lautenbach MJ; Åhlberg E; Lin A; Lepzien R; Szurgot I; Lenart K; Hellgren F; Maecker H; Sälde J; Albert J; Johansson N; Bell M; Loré K; Färnert A; Smed-Sörensen A
    J Clin Invest; 2021 Mar; 131(6):. PubMed ID: 33492309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells.
    Jitschin R; Saul D; Braun M; Tohumeken S; Völkl S; Kischel R; Lutteropp M; Dos Santos C; Mackensen A; Mougiakakos D
    J Immunother Cancer; 2018 Nov; 6(1):116. PubMed ID: 30396365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Innate immunity in COVID-19: Drivers of pathogenesis and potential therapeutic targets.
    Ruenjaiman V; Hirankarn N; Palaga T
    Asian Pac J Allergy Immunol; 2021 Jun; 39(2):69-77. PubMed ID: 34174806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased CD14
    Wang Z; Zhu F; Wang J; Tao Q; Xu X; Wang H; Xiong S; Wang Y; Zhai Z
    Front Immunol; 2019; 10():1202. PubMed ID: 31231374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloid-derived suppressor cells: paradoxical roles in infection and immunity.
    Dai J; El Gazzar M; Li GY; Moorman JP; Yao ZQ
    J Innate Immun; 2015; 7(2):116-26. PubMed ID: 25401944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis.
    Len JS; Koh CWT; Chan KR
    Viruses; 2023 Dec; 16(1):. PubMed ID: 38257728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership.
    Bergerud KMB; Berkseth M; Pardoll DM; Ganguly S; Kleinberg LR; Lawrence J; Odde DJ; Largaespada DA; Terezakis SA; Sloan L
    Int J Radiat Oncol Biol Phys; 2024 May; 119(1):42-55. PubMed ID: 38042450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myeloid-Derived Suppressor Cells Contribute to Susceptibility to
    Onyilagha C; Kuriakose S; Ikeogu N; Jia P; Uzonna J
    J Immunol; 2018 Jul; 201(2):507-515. PubMed ID: 29898961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-trans-retinoic acid restores CD4+ T cell response after sepsis by inhibiting the expansion and activation of myeloid-derived suppressor cells.
    Liu T; Yang F; Xie J; Chen J; Gao W; Bai X; Li Z
    Mol Immunol; 2021 Aug; 136():8-15. PubMed ID: 34051632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutrophils as myeloid-derived suppressor cells.
    Aarts CEM; Kuijpers TW
    Eur J Clin Invest; 2018 Nov; 48 Suppl 2():e12989. PubMed ID: 29956819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SARS-CoV-2-Induced ARDS Associates with MDSC Expansion, Lymphocyte Dysfunction, and Arginine Shortage.
    Reizine F; Lesouhaitier M; Gregoire M; Pinceaux K; Gacouin A; Maamar A; Painvin B; Camus C; Le Tulzo Y; Tattevin P; Revest M; Le Bot A; Ballerie A; Cador-Rousseau B; Lederlin M; Lebouvier T; Launey Y; Latour M; Verdy C; Rossille D; Le Gallou S; Dulong J; Moreau C; Bendavid C; Roussel M; Cogne M; Tarte K; Tadié JM
    J Clin Immunol; 2021 Apr; 41(3):515-525. PubMed ID: 33387156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders.
    Salminen A; Kaarniranta K; Kauppinen A
    Int Immunopharmacol; 2018 Aug; 61():231-240. PubMed ID: 29894862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myeloid-derived suppressor cells in transplantation tolerance induction.
    Cao P; Sun Z; Feng C; Zhang J; Zhang F; Wang W; Zhao Y
    Int Immunopharmacol; 2020 Jun; 83():106421. PubMed ID: 32217462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy.
    Zhang W; Li J; Qi G; Tu G; Yang C; Xu M
    J Transl Med; 2018 Jan; 16(1):19. PubMed ID: 29378596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of Immunosuppressive Drugs on MDSCs in Transplantation.
    Yang F; Li Y; Zhang Q; Tan L; Peng L; Zhao Y
    J Immunol Res; 2018; 2018():5414808. PubMed ID: 30057917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myeloid-Derived Suppressor Cells and Their Potential Application in Transplantation.
    Scalea JR; Lee YS; Davila E; Bromberg JS
    Transplantation; 2018 Mar; 102(3):359-367. PubMed ID: 29189485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.