These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34678791)

  • 1. The activity evidence of Ti defect towards electrocatalytic N
    Wu T; Ma C; Wang P; Zhao H; Zhang Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34678791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the Origin of Ti
    Wu T; Zhao H; Zhu X; Xing Z; Liu Q; Liu T; Gao S; Lu S; Chen G; Asiri AM; Zhang Y; Sun X
    Adv Mater; 2020 Jul; 32(30):e2000299. PubMed ID: 32567074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts.
    Wu Y; He C; Zhang W
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47520-47529. PubMed ID: 34585912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Prediction of Single Metal Atom Supported on Two-Dimensional Metal Diborides for Electrocatalytic N
    Ge L; Xu W; Chen C; Tang C; Xu L; Chen Z
    J Phys Chem Lett; 2020 Jul; 11(13):5241-5247. PubMed ID: 32526146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S; Lu X; Wang L; Gale J; Amal R
    Adv Mater; 2019 Mar; 31(13):e1805367. PubMed ID: 30648293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancement in the electrocatalytic synthesis of ammonia.
    Wen X; Guan J
    Nanoscale; 2020 Apr; 12(15):8065-8094. PubMed ID: 32253416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Investigation on the Single Transition-Metal Atom-Decorated Defective MoS
    Guo H; Li L; Wang X; Yao G; Yu H; Tian Z; Li B; Chen L
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36506-36514. PubMed ID: 31514492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termination effects of single-atom decorated v-Mo
    Zhai X; Dong H; Li Y; Yang X; Li L; Yang J; Zhang Y; Zhang J; Yan H; Ge G
    J Colloid Interface Sci; 2022 Jan; 605():897-905. PubMed ID: 34371433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction.
    Patil SB; Wang DY
    Small; 2020 Nov; 16(45):e2002885. PubMed ID: 32945097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic Pairs Supported on Graphene as Efficient Electrocatalysts for Nitrogen Fixation: Search for the Optimal Coordination Atoms.
    Hu R; Li Y; Zeng Q; Wang F; Shang J
    ChemSusChem; 2020 Jul; 13(14):3636-3644. PubMed ID: 32367626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory study of transition metal single-atoms anchored on graphyne as efficient electrocatalysts for the nitrogen reduction reaction.
    Song W; Xie K; Wang J; Guo Y; He C; Fu L
    Phys Chem Chem Phys; 2021 May; 23(17):10418-10428. PubMed ID: 33889880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the Bioinspired Fe
    Singstock NR; Musgrave CB
    J Am Chem Soc; 2022 Jul; 144(28):12800-12806. PubMed ID: 35816127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchoring Au(111) on a Bismuth Sulfide Nanorod: Boosting the Artificial Electrocatalytic Nitrogen Reduction Reaction under Ambient Conditions.
    Zhao L; Zhou J; Zhang L; Sun X; Sun X; Yan T; Ren X; Wei Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55838-55843. PubMed ID: 33263999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction.
    Zhu H; Wang C; He Y; Pu Y; Li P; He L; Huang X; Tang W; Tang H
    Front Chem; 2022; 10():1039738. PubMed ID: 36311423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically synthesized SnO
    He X; Guo H; Liao T; Pu Y; Lai L; Wang Z; Tang H
    Nanoscale; 2021 Oct; 13(38):16307-16315. PubMed ID: 34559870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the Volcano-Shaped Relationship for Highly Efficient Electrocatalytic Nitrogen Reduction: A Computational Guideline.
    Gao D; Yi D; Sun C; Yang Y; Wang X
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52806-52814. PubMed ID: 36380594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and activity of titanium oxynitride thin films for the electrocatalytic reduction of nitrogen to ammonia at different pH values.
    Chukwunenye P; Ganesan A; Gharaee M; Balogun K; Adesope Q; Amagbor SC; Golden TD; D'Souza F; Cundari TR; Kelber JA
    Phys Chem Chem Phys; 2023 Jul; 25(29):19540-19552. PubMed ID: 37395083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unifying the Nitrogen Reduction Activity of Anatase and Rutile TiO
    Ji Y; Liu P; Fan T
    Chemphyschem; 2023 Jan; 24(2):e202200653. PubMed ID: 36195557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT study on regulating the active center of v-Ti
    Xiong Y; Zhang Y; Wang Y; Ma N; Zhao J; Luo S; Fan J
    J Colloid Interface Sci; 2024 Jun; 664():1-12. PubMed ID: 38458050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions.
    Qiu Y; Peng X; Lü F; Mi Y; Zhuo L; Ren J; Liu X; Luo J
    Chem Asian J; 2019 Aug; 14(16):2770-2779. PubMed ID: 31290592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.