These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34679198)

  • 1. Assembly of long carbon nanotube bridges across transparent electrodes using novel thickness-controlled dielectrophoresis.
    Abdulhameed A; Mohtar MN; Hamidon MN; Halin IA
    Electrophoresis; 2022 Feb; 43(3):487-494. PubMed ID: 34679198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Surfactant Concentration in Carbon Nanotube Solutions for Dielectrophoretic Ceiling Assembly and Alignment: Implications for Transparent Electronics.
    Abdulhameed A; Halin IA; Mohtar MN; Hamidon MN
    ACS Omega; 2022 Feb; 7(4):3680-3688. PubMed ID: 35128276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airflow-assisted dielectrophoresis to reduce the resistance mismatch in carbon nanotube-based temperature sensors.
    Abdulhameed A; Halin IA; Mohtar MN; Hamidon MN
    RSC Adv; 2021 Dec; 11(62):39311-39318. PubMed ID: 35492445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
    Naieni AK; Nojeh A
    Nanotechnology; 2012 Dec; 23(49):495606. PubMed ID: 23165429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.
    Berger SD; McGruer NE; Adams GG
    Nanotechnology; 2015 Apr; 26(15):155602. PubMed ID: 25804394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube-based hot-film and temperature sensor assembled by optically-induced dielectrophoresis.
    Hsu MC; Hsu MC; Lee GB
    IET Nanobiotechnol; 2014 Mar; 8(1):44-50. PubMed ID: 24888191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube dielectrophoresis: Theory and applications.
    Rabbani MT; Sonker M; Ros A
    Electrophoresis; 2020 Nov; 41(21-22):1893-1914. PubMed ID: 32474942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
    Seichepine F; Rothe J; Dudina A; Hierlemann A; Frey U
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28295737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets.
    Seichepine F; Salomon S; Collet M; Guillon S; Nicu L; Larrieu G; Flahaut E; Vieu C
    Nanotechnology; 2012 Mar; 23(9):095303. PubMed ID: 22327351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges.
    Zhou T; Michaels M; Kulinsky L
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.
    Gwon HR; Chang ST; Choi CK; Jung JY; Kim JM; Lee SH
    Electrophoresis; 2014 Jul; 35(14):2014-21. PubMed ID: 24737601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A carbon nanotube gas sensor fabricated by dielectrophoresis and its application for NH3 detection.
    Wang R; Li H; Pan M; Chen D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6046-9. PubMed ID: 19964889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.