BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34679199)

  • 1. Clinical significance of the latency period of abnormal ammonia metabolism in chronic liver disease: Proposal of a new concept.
    Katayama K
    Hepatol Res; 2022 Jan; 52(1):75-80. PubMed ID: 34679199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible pathogenetic role of ammonia in liver cirrhosis without hyperammonemia of venous blood: The so-called latency period of abnormal ammonia metabolism.
    Katayama K; Kakita N
    Hepatol Res; 2024 Mar; 54(3):235-243. PubMed ID: 38323701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc and protein metabolism in chronic liver diseases.
    Katayama K
    Nutr Res; 2020 Feb; 74():1-9. PubMed ID: 31891865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia metabolism and hyperammonemic disorders.
    Walker V
    Adv Clin Chem; 2014; 67():73-150. PubMed ID: 25735860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the treatment of hyperammonemia.
    Matoori S; Leroux JC
    Adv Drug Deliv Rev; 2015 Aug; 90():55-68. PubMed ID: 25895618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting autophagy for therapy of hyperammonemia.
    Soria LR; Brunetti-Pierri N
    Autophagy; 2018; 14(7):1273-1275. PubMed ID: 30035657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis.
    Dam G; Ott P; Aagaard NK; Vilstrup H
    Metab Brain Dis; 2013 Jun; 28(2):217-20. PubMed ID: 23315357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of hepatic autophagy increases ureagenesis and protects against hyperammonemia.
    Soria LR; Allegri G; Melck D; Pastore N; Annunziata P; Paris D; Polishchuk E; Nusco E; Thöny B; Motta A; Häberle J; Ballabio A; Brunetti-Pierri N
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):391-396. PubMed ID: 29279371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of oral L-ornithine L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy.
    Blanco Vela CI; Poo Ramírez JL
    Ann Hepatol; 2011 Jun; 10 Suppl 2():S55-9. PubMed ID: 22228883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia Scavenging Prevents Progression of Fibrosis in Experimental Nonalcoholic Fatty Liver Disease.
    De Chiara F; Thomsen KL; Habtesion A; Jones H; Davies N; Gracia-Sancho J; Manicardi N; Hall A; Andreola F; Paish HL; Reed LH; Watson AA; Leslie J; Oakley F; Rombouts K; Mookerjee RP; Mann J; Jalan R
    Hepatology; 2020 Mar; 71(3):874-892. PubMed ID: 31378982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splanchnic circulation and metabolism in patients with acute liver failure.
    Clemmesen O
    Dan Med Bull; 2002 Aug; 49(3):177-93. PubMed ID: 12238280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic glutamine synthetase augmentation enhances ammonia detoxification.
    Soria LR; Nitzahn M; De Angelis A; Khoja S; Attanasio S; Annunziata P; Palmer DJ; Ng P; Lipshutz GS; Brunetti-Pierri N
    J Inherit Metab Dis; 2019 Nov; 42(6):1128-1135. PubMed ID: 30724386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia.
    Bak LK; Iversen P; Sørensen M; Keiding S; Vilstrup H; Ott P; Waagepetersen HS; Schousboe A
    Metab Brain Dis; 2009 Mar; 24(1):135-45. PubMed ID: 19067142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase.
    Qvartskhava N; Lang PA; Görg B; Pozdeev VI; Ortiz MP; Lang KS; Bidmon HJ; Lang E; Leibrock CB; Herebian D; Bode JG; Lang F; Häussinger D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5521-6. PubMed ID: 25870278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut ammonia production and its modulation.
    Romero-Gómez M; Jover M; Galán JJ; Ruiz A
    Metab Brain Dis; 2009 Mar; 24(1):147-57. PubMed ID: 19067141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurine transporter (TauT) deficiency impairs ammonia detoxification in mouse liver.
    Qvartskhava N; Jin CJ; Buschmann T; Albrecht U; Bode JG; Monhasery N; Oenarto J; Bidmon HJ; Görg B; Häussinger D
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6313-6318. PubMed ID: 30862735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis.
    Kawaguchi T; Taniguchi E; Sata M
    Nutr Clin Pract; 2013 Oct; 28(5):580-8. PubMed ID: 23945292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy.
    Holecek M
    Nutrition; 2015 Jan; 31(1):14-20. PubMed ID: 25220875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives.
    Holecek M
    Metab Brain Dis; 2014 Mar; 29(1):9-17. PubMed ID: 23996300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia: key factor in the pathogenesis of hepatic encephalopathy.
    Butterworth RF; Giguère JF; Michaud J; Lavoie J; Layrargues GP
    Neurochem Pathol; 1987; 6(1-2):1-12. PubMed ID: 3306479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.