These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 34679346)
1. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Shin JC; Jeon HR; Kim D; Cho SI; Min WK; Lee JS; Oh DS; Yoo J Brain Sci; 2021 Sep; 11(10):. PubMed ID: 34679346 [TBL] [Abstract][Full Text] [Related]
2. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. Shin JC; Jeon HR; Kim D; Min WK; Lee JS; Cho SI; Oh DS; Yoo J NeuroRehabilitation; 2023; 53(3):335-346. PubMed ID: 37638457 [TBL] [Abstract][Full Text] [Related]
3. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury. Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210 [TBL] [Abstract][Full Text] [Related]
4. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
5. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Shin JC; Kim JY; Park HK; Kim NY Ann Rehabil Med; 2014 Dec; 38(6):719-25. PubMed ID: 25566469 [TBL] [Abstract][Full Text] [Related]
6. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study. Hwang S; Kim HR; Han ZA; Lee BS; Kim S; Shin H; Moon JG; Yang SP; Lim MH; Cho DY; Kim H; Lee HJ Ann Rehabil Med; 2017 Feb; 41(1):34-41. PubMed ID: 28289633 [TBL] [Abstract][Full Text] [Related]
7. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Mıdık M; Paker N; Buğdaycı D; Mıdık AC Turk J Phys Med Rehabil; 2020 Mar; 66(1):54-59. PubMed ID: 32318675 [TBL] [Abstract][Full Text] [Related]
8. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847 [TBL] [Abstract][Full Text] [Related]
9. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial. Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J; Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642 [TBL] [Abstract][Full Text] [Related]
10. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Nam KY; Kim HJ; Kwon BS; Park JW; Lee HJ; Yoo A J Neuroeng Rehabil; 2017 Mar; 14(1):24. PubMed ID: 28330471 [TBL] [Abstract][Full Text] [Related]
11. Construct Validity of the Gait Deviation Index for People With Incomplete Spinal Cord Injury (GDI-SCI). Sinovas-Alonso I; Herrera-Valenzuela D; de-Los-Reyes-Guzmán A; Cano-de-la-Cuerda R; Del-Ama AJ; Gil-Agudo Á Neurorehabil Neural Repair; 2023 Oct; 37(10):705-715. PubMed ID: 37864467 [TBL] [Abstract][Full Text] [Related]
12. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133 [TBL] [Abstract][Full Text] [Related]
13. Morning Walk Jung C; Kim DY; Kwon S; Chun MH; Kim J; Kim SH Brain Neurorehabil; 2020 Nov; 13(3):e23. PubMed ID: 36741796 [TBL] [Abstract][Full Text] [Related]
15. Impact of Robotic-Assisted Gait Training in Subacute Spinal Cord Injury Patients on Outcome Measure. Tarnacka B; Korczyński B; Frasuńska J Diagnostics (Basel); 2023 Jun; 13(11):. PubMed ID: 37296818 [TBL] [Abstract][Full Text] [Related]
16. Muscle force and gait performance: relationships after spinal cord injury. Wirz M; van Hedel HJ; Rupp R; Curt A; Dietz V Arch Phys Med Rehabil; 2006 Sep; 87(9):1218-22. PubMed ID: 16935058 [TBL] [Abstract][Full Text] [Related]
17. Gait Training with Robotic Exoskeleton Assisted Rehabilitation System in Patients with Incomplete Traumatic and Non-Traumatic Spinal Cord Injury: A Pilot Study and Review of Literature. Gupta A; Prakash NB; Honavar PR Ann Indian Acad Neurol; 2023 Jan; 26(Suppl 1):S26-S31. PubMed ID: 37092019 [TBL] [Abstract][Full Text] [Related]
18. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-analysis. Fang CY; Tsai JL; Li GS; Lien AS; Chang YJ Biomed Res Int; 2020; 2020():2102785. PubMed ID: 32280681 [TBL] [Abstract][Full Text] [Related]
19. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
20. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Stampacchia G; Olivieri M; Rustici A; D'Avino C; Gerini A; Mazzoleni S Spinal Cord; 2020 Sep; 58(9):988-997. PubMed ID: 32251368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]