These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 34680159)
1. Application of CRISPR/Cas9 Tools for Genome Editing in the White-Rot Fungus Kowalczyk JE; Saha S; Mäkelä MR Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680159 [No Abstract] [Full Text] [Related]
2. Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens. Casado López S; Peng M; Issak TY; Daly P; de Vries RP; Mäkelä MR Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572208 [TBL] [Abstract][Full Text] [Related]
3. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Rytioja J; Hildén K; Di Falco M; Zhou M; Aguilar-Pontes MV; Sietiö OM; Tsang A; de Vries RP; Mäkelä MR Environ Microbiol; 2017 Mar; 19(3):1237-1250. PubMed ID: 28028889 [TBL] [Abstract][Full Text] [Related]
4. Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus Daly P; Peng M; Di Falco M; Lipzen A; Wang M; Ng V; Grigoriev IV; Tsang A; Mäkelä MR; de Vries RP Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31585998 [TBL] [Abstract][Full Text] [Related]
5. The White-Rot Basidiomycete Kowalczyk JE; Peng M; Pawlowski M; Lipzen A; Ng V; Singan V; Wang M; Grigoriev IV; Mäkelä MR Front Bioeng Biotechnol; 2019; 7():229. PubMed ID: 31616664 [TBL] [Abstract][Full Text] [Related]
6. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. Rytioja J; Hildén K; Mäkinen S; Vehmaanperä J; Hatakka A; Mäkelä MR PLoS One; 2015; 10(12):e0145166. PubMed ID: 26660105 [TBL] [Abstract][Full Text] [Related]
7. Mixtures of aromatic compounds induce ligninolytic gene expression in the wood-rotting fungus Dichomitus squalens. Daly P; Peng M; Casado López S; Lipzen A; Ng V; Singan VR; Wang M; Grigoriev IV; de Vries RP; Mäkelä MR J Biotechnol; 2020 Jan; 308():35-39. PubMed ID: 31778732 [TBL] [Abstract][Full Text] [Related]
8. Multiplexed CRISPR-Cas9-Based Genome Editing of Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433 [TBL] [Abstract][Full Text] [Related]
9. Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides. Jiao X; Zhang Y; Liu X; Zhang Q; Zhang S; Zhao ZK Biotechnol J; 2019 Jul; 14(7):e1900036. PubMed ID: 31066204 [TBL] [Abstract][Full Text] [Related]
11. Genome Editing Using CRISPR/Cas9 System in the Rice Blast Fungus. Arazoe T Methods Mol Biol; 2021; 2356():149-160. PubMed ID: 34236684 [TBL] [Abstract][Full Text] [Related]
12. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
13. Dichomitus squalens partially tailors its molecular responses to the composition of solid wood. Daly P; López SC; Peng M; Lancefield CS; Purvine SO; Kim YM; Zink EM; Dohnalkova A; Singan VR; Lipzen A; Dilworth D; Wang M; Ng V; Robinson E; Orr G; Baker SE; Bruijnincx PCA; Hildén KS; Grigoriev IV; Mäkelä MR; de Vries RP Environ Microbiol; 2018 Nov; 20(11):4141-4156. PubMed ID: 30246402 [TBL] [Abstract][Full Text] [Related]
14. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration. Bloomer H; Smith RH; Hakami W; Larochelle A Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880 [TBL] [Abstract][Full Text] [Related]
15. Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail. Daly P; Slaghek GG; Casado López S; Wiebenga A; Hilden KS; de Vries RP; Mäkelä MR J Microbiol Methods; 2017 Dec; 143():38-43. PubMed ID: 28987554 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9-Based Genome Editing for Protein Expression and Secretion in Liao L; Shen X; Shen Z; Du G; Li J; Zhang G ACS Synth Biol; 2024 Jul; 13(7):2105-2114. PubMed ID: 38871652 [TBL] [Abstract][Full Text] [Related]
17. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. Li J; Wu M; Igarashi Y; Luo F; Chang P J Microbiol Methods; 2023 Nov; 214():106842. PubMed ID: 37827437 [TBL] [Abstract][Full Text] [Related]
19. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation. Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197 [No Abstract] [Full Text] [Related]
20. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Albadri S; Del Bene F; Revenu C Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]