These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 34680159)
21. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality. Shen JY; Zhao Q; He QL ACS Synth Biol; 2023 Jul; 12(7):1908-1923. PubMed ID: 37404005 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Rytioja J; Hildén K; Hatakka A; Mäkelä MR Fungal Genet Biol; 2014 Nov; 72():91-98. PubMed ID: 24394946 [TBL] [Abstract][Full Text] [Related]
28. [CRISPR/CAS9, the King of Genome Editing Tools]. Bannikov AV; Lavrov AV Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076 [TBL] [Abstract][Full Text] [Related]
29. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum. Pohl C; Kiel JA; Driessen AJ; Bovenberg RA; Nygård Y ACS Synth Biol; 2016 Jul; 5(7):754-64. PubMed ID: 27072635 [TBL] [Abstract][Full Text] [Related]
30. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration. Mäkelä MR; Sietiö OM; de Vries RP; Timonen S; Hildén K PLoS One; 2014; 9(2):e87959. PubMed ID: 24505339 [TBL] [Abstract][Full Text] [Related]
31. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription. Wu C; Chen Y; Qiu Y; Niu X; Zhu N; Chen J; Yao H; Wang W; Ma Y Biotechnol Lett; 2020 Jul; 42(7):1203-1210. PubMed ID: 32300998 [TBL] [Abstract][Full Text] [Related]
32. Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata. Dong YC; Dai YN; Xu TY; Cai J; Chen QH Bioprocess Biosyst Eng; 2014 May; 37(5):755-64. PubMed ID: 24013443 [TBL] [Abstract][Full Text] [Related]
33. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides. Nagy G; Szebenyi C; Csernetics Á; Vaz AG; Tóth EJ; Vágvölgyi C; Papp T Sci Rep; 2017 Dec; 7(1):16800. PubMed ID: 29196656 [TBL] [Abstract][Full Text] [Related]
34. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C; Wheeldon I Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237 [TBL] [Abstract][Full Text] [Related]
35. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
36. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. Schwartz CM; Hussain MS; Blenner M; Wheeldon I ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206 [TBL] [Abstract][Full Text] [Related]
37. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Naduthodi MIS; Mohanraju P; Südfeld C; D'Adamo S; Barbosa MJ; van der Oost J Biotechnol Biofuels; 2019; 12():66. PubMed ID: 30962821 [TBL] [Abstract][Full Text] [Related]
38. Gene Disruption Using CRISPR-Cas9 Technology. Hu N; Malek SN Methods Mol Biol; 2019; 1881():201-209. PubMed ID: 30350208 [TBL] [Abstract][Full Text] [Related]
39. Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes. Camperi J; Moshref M; Dai L; Lee HY Anal Chem; 2022 Jan; 94(2):1432-1440. PubMed ID: 34958212 [TBL] [Abstract][Full Text] [Related]
40. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants. Tang X; Zhong Z; Ren Q; Liu B; Zhang Y Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]