These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34680971)

  • 1. DBtRend: A Web-Server of tRNA Expression Profiles from Small RNA Sequencing Data in Humans.
    Lee JO; Lee M; Chung YJ
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34680971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tReasure: R-based GUI package analyzing tRNA expression profiles from small RNA sequencing data.
    Lee JO; Chu J; Jang G; Lee M; Chung YJ
    BMC Bioinformatics; 2022 May; 23(1):155. PubMed ID: 35501677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRic: a user-friendly data portal to explore the expression landscape of tRNAs in human cancers.
    Zhang Z; Ruan H; Liu CJ; Ye Y; Gong J; Diao L; Guo AY; Han L
    RNA Biol; 2020 Nov; 17(11):1674-1679. PubMed ID: 31432762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers.
    Zheng LL; Xu WL; Liu S; Sun WJ; Li JH; Wu J; Yang JH; Qu LH
    Nucleic Acids Res; 2016 Jul; 44(W1):W185-93. PubMed ID: 27179031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.
    Lowe TM; Chan PP
    Nucleic Acids Res; 2016 Jul; 44(W1):W54-7. PubMed ID: 27174935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific differences in human transfer RNA expression.
    Dittmar KA; Goodenbour JM; Pan T
    PLoS Genet; 2006 Dec; 2(12):e221. PubMed ID: 17194224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive collection of annotations to interpret sequence variation in human mitochondrial transfer RNAs.
    Diroma MA; Lubisco P; Attimonelli M
    BMC Bioinformatics; 2016 Nov; 17(Suppl 12):338. PubMed ID: 28185569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.
    Hopper AK
    Genetics; 2013 May; 194(1):43-67. PubMed ID: 23633143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OncotRF: an online resource for exploration of tRNA-derived fragments in human cancers.
    Yao D; Sun X; Zhou L; Amanullah M; Pan X; Liu Y; Liang M; Liu P; Lu Y
    RNA Biol; 2020 Aug; 17(8):1081-1091. PubMed ID: 32597311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification.
    Warren JM; Salinas-Giegé T; Hummel G; Coots NL; Svendsen JM; Brown KC; Drouard L; Sloan DB
    RNA Biol; 2021 Jan; 18(1):64-78. PubMed ID: 32715941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNAviz: explore and visualize tRNA sequence features.
    Lin BY; Chan PP; Lowe TM
    Nucleic Acids Res; 2019 Jul; 47(W1):W542-W547. PubMed ID: 31127306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNAstudio: facilitating the study of human mature tRNAs from deep sequencing datasets.
    Murillo-Recio M; Martínez de Lejarza Samper IM; Tuñí I Domínguez C; Ribas de Pouplana L; Torres AG
    Bioinformatics; 2022 May; 38(10):2934-2936. PubMed ID: 35561195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of the Premature tRNA Landscape by Gammaherpesvirus Infection.
    Tucker JM; Schaller AM; Willis I; Glaunsinger BA
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function.
    Liapi E; van Bilsen M; Verjans R; Schroen B
    Biochim Biophys Acta Mol Cell Res; 2020 Mar; 1867(3):118465. PubMed ID: 30943428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies.
    Telonis AG; Loher P; Honda S; Jing Y; Palazzo J; Kirino Y; Rigoutsos I
    Oncotarget; 2015 Sep; 6(28):24797-822. PubMed ID: 26325506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments.
    Pliatsika V; Loher P; Telonis AG; Rigoutsos I
    Bioinformatics; 2016 Aug; 32(16):2481-9. PubMed ID: 27153631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and frequencies of post-transcriptional modifications in tRNAs.
    Machnicka MA; Olchowik A; Grosjean H; Bujnicki JM
    RNA Biol; 2014; 11(12):1619-29. PubMed ID: 25611331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNAmodpred: A computational method for predicting posttranscriptional modifications in tRNAs.
    Machnicka MA; Dunin-Horkawicz S; de Crécy-Lagard V; Bujnicki JM
    Methods; 2016 Sep; 107():34-41. PubMed ID: 27016142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana.
    Thompson A; Zielezinski A; Plewka P; Szymanski M; Nuc P; Szweykowska-Kulinska Z; Jarmolowski A; Karlowski WM
    Plant Cell Physiol; 2018 Jan; 59(1):e1. PubMed ID: 29145635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.