These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 34681606)

  • 1. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility?
    Ivanova JS; Lyublinskaya OG
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial function in pluripotent stem cells and cellular reprogramming.
    Bukowiecki R; Adjaye J; Prigione A
    Gerontology; 2014; 60(2):174-82. PubMed ID: 24281332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and pluripotent stem cells function.
    Jia ZW
    Yi Chuan; 2016 Jul; 38(7):603-611. PubMed ID: 27733333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling.
    Hämäläinen RH; Ahlqvist KJ; Ellonen P; Lepistö M; Logan A; Otonkoski T; Murphy MP; Suomalainen A
    Cell Rep; 2015 Jun; 11(10):1614-24. PubMed ID: 26027936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells.
    Wei H; Cong X
    Free Radic Res; 2018 Feb; 52(2):150-158. PubMed ID: 29258365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?
    Lopes C; Rego AC
    Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
    Zhang J; Nuebel E; Daley GQ; Koehler CM; Teitell MA
    Cell Stem Cell; 2012 Nov; 11(5):589-95. PubMed ID: 23122286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells.
    Babaei-Abraki S; Karamali F; Nasr-Esfahani MH
    Stem Cell Rev Rep; 2022 Jun; 18(5):1789-1808. PubMed ID: 35141862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic regulation in pluripotent stem cells.
    Diamante L; Martello G
    Curr Opin Genet Dev; 2022 Aug; 75():101923. PubMed ID: 35691147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells.
    Cho SW; Park JS; Heo HJ; Park SW; Song S; Kim I; Han YM; Yamashita JK; Youm JB; Han J; Koh GY
    J Am Heart Assoc; 2014 Mar; 3(2):e000693. PubMed ID: 24627421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells.
    Mishra S; Kacin E; Stamatiadis P; Franck S; Van der Jeught M; Mertes H; Pennings G; De Sutter P; Sermon K; Heindryckx B; Geens M
    Mol Hum Reprod; 2018 Apr; 24(4):173-184. PubMed ID: 29471503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Remodeling in Chicken Induced Pluripotent Stem-Like Cells.
    Choi HW; Kim JS; Choi S; Ju Hong Y; Byun SJ; Seo HG; Do JT
    Stem Cells Dev; 2016 Mar; 25(6):472-6. PubMed ID: 26795691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming.
    Sato S; Hishida T; Kinouchi K; Hatanaka F; Li Y; Nguyen Q; Chen Y; Wang PH; Kessenbrock K; Li W; Izpisua Belmonte JC; Sassone-Corsi P
    Cell Rep; 2023 Jun; 42(6):112590. PubMed ID: 37261952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cells and the impact of ROS signaling.
    Bigarella CL; Liang R; Ghaffari S
    Development; 2014 Nov; 141(22):4206-18. PubMed ID: 25371358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells.
    Wang Y; Guo B; Xiao Z; Lin H; Zhang X; Song Y; Li Y; Gao X; Yu J; Shao Z; Li X; Luo Y; Li S
    Stem Cell Res Ther; 2019 Jul; 10(1):220. PubMed ID: 31358062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation.
    Giallongo S; Rehakova D; Raffaele M; Lo Re O; Koutna I; Vinciguerra M
    Antioxid Redox Signal; 2021 Feb; 34(4):335-349. PubMed ID: 32567336
    [No Abstract]   [Full Text] [Related]  

  • 20. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation.
    Jasra IT; Cuesta-Gomez N; Verhoeff K; Marfil-Garza BA; Dadheech N; Shapiro AMJ
    Front Endocrinol (Lausanne); 2023; 14():1236472. PubMed ID: 37929027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.