BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34681606)

  • 1. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility?
    Ivanova JS; Lyublinskaya OG
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial function in pluripotent stem cells and cellular reprogramming.
    Bukowiecki R; Adjaye J; Prigione A
    Gerontology; 2014; 60(2):174-82. PubMed ID: 24281332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and pluripotent stem cells function.
    Jia ZW
    Yi Chuan; 2016 Jul; 38(7):603-611. PubMed ID: 27733333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling.
    Hämäläinen RH; Ahlqvist KJ; Ellonen P; Lepistö M; Logan A; Otonkoski T; Murphy MP; Suomalainen A
    Cell Rep; 2015 Jun; 11(10):1614-24. PubMed ID: 26027936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells.
    Wei H; Cong X
    Free Radic Res; 2018 Feb; 52(2):150-158. PubMed ID: 29258365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?
    Lopes C; Rego AC
    Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
    Zhang J; Nuebel E; Daley GQ; Koehler CM; Teitell MA
    Cell Stem Cell; 2012 Nov; 11(5):589-95. PubMed ID: 23122286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells.
    Babaei-Abraki S; Karamali F; Nasr-Esfahani MH
    Stem Cell Rev Rep; 2022 Jun; 18(5):1789-1808. PubMed ID: 35141862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic regulation in pluripotent stem cells.
    Diamante L; Martello G
    Curr Opin Genet Dev; 2022 Aug; 75():101923. PubMed ID: 35691147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells.
    Cho SW; Park JS; Heo HJ; Park SW; Song S; Kim I; Han YM; Yamashita JK; Youm JB; Han J; Koh GY
    J Am Heart Assoc; 2014 Mar; 3(2):e000693. PubMed ID: 24627421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells.
    Mishra S; Kacin E; Stamatiadis P; Franck S; Van der Jeught M; Mertes H; Pennings G; De Sutter P; Sermon K; Heindryckx B; Geens M
    Mol Hum Reprod; 2018 Apr; 24(4):173-184. PubMed ID: 29471503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Remodeling in Chicken Induced Pluripotent Stem-Like Cells.
    Choi HW; Kim JS; Choi S; Ju Hong Y; Byun SJ; Seo HG; Do JT
    Stem Cells Dev; 2016 Mar; 25(6):472-6. PubMed ID: 26795691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming.
    Sato S; Hishida T; Kinouchi K; Hatanaka F; Li Y; Nguyen Q; Chen Y; Wang PH; Kessenbrock K; Li W; Izpisua Belmonte JC; Sassone-Corsi P
    Cell Rep; 2023 Jun; 42(6):112590. PubMed ID: 37261952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cells and the impact of ROS signaling.
    Bigarella CL; Liang R; Ghaffari S
    Development; 2014 Nov; 141(22):4206-18. PubMed ID: 25371358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells.
    Wang Y; Guo B; Xiao Z; Lin H; Zhang X; Song Y; Li Y; Gao X; Yu J; Shao Z; Li X; Luo Y; Li S
    Stem Cell Res Ther; 2019 Jul; 10(1):220. PubMed ID: 31358062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation.
    Giallongo S; Rehakova D; Raffaele M; Lo Re O; Koutna I; Vinciguerra M
    Antioxid Redox Signal; 2021 Feb; 34(4):335-349. PubMed ID: 32567336
    [No Abstract]   [Full Text] [Related]  

  • 20. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation.
    Jasra IT; Cuesta-Gomez N; Verhoeff K; Marfil-Garza BA; Dadheech N; Shapiro AMJ
    Front Endocrinol (Lausanne); 2023; 14():1236472. PubMed ID: 37929027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.