BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34681675)

  • 21. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide.
    Abbassi F; Lequin O; Piesse C; Goasdoué N; Foulon T; Nicolas P; Ladram A
    J Biol Chem; 2010 May; 285(22):16880-92. PubMed ID: 20308076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles.
    Rinaldi AC; Mangoni ML; Rufo A; Luzi C; Barra D; Zhao H; Kinnunen PK; Bozzi A; Di Giulio A; Simmaco M
    Biochem J; 2002 Nov; 368(Pt 1):91-100. PubMed ID: 12133008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation and Its Influence on the Bioactivities of a Novel Antimicrobial Peptide, Temporin-PF, and Its Analogues.
    Zai Y; Xi X; Ye Z; Ma C; Zhou M; Chen X; Siu SWI; Chen T; Wang L; Kwok HF
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L.
    Mahalka AK; Kinnunen PK
    Biochim Biophys Acta; 2009 Aug; 1788(8):1600-9. PubMed ID: 19394305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of helical kink in antimicrobial peptides on membrane pore formation.
    Tuerkova A; Kabelka I; Králová T; Sukeník L; Pokorná Š; Hof M; Vácha R
    Elife; 2020 Mar; 9():. PubMed ID: 32167466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in computational modeling of α-helical membrane-active peptides.
    Polyansky AA; Chugunov AO; Vassilevski AA; Grishin EV; Efremov RG
    Curr Protein Pept Sci; 2012 Nov; 13(7):644-57. PubMed ID: 23363529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Dynamics Simulations Help Determine the Molecular Mechanisms of Lasioglossin-III and Its Variant Peptides' Membrane Interfacial Interactions.
    Kumar A; Mishra B; Konar AD; Mylonakis E; Basu A
    J Phys Chem B; 2024 Jun; 128(25):6049-6058. PubMed ID: 38840325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes.
    Chen L; Li X; Gao L; Fang W
    J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic peptides bioinspired in temporin-PTa with antibacterial and antibiofilm activity.
    Souza E Silva P; Ferreira MA; de Moraes LFR; de Barros E; Preza SLE; Cardoso MH; Franco OL; Migliolo L
    Chem Biol Drug Des; 2022 Jul; 100(1):51-63. PubMed ID: 35377553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity.
    Manzo G; Ferguson PM; Gustilo VB; Hind CK; Clifford M; Bui TT; Drake AF; Atkinson RA; Sutton JM; Batoni G; Lorenz CD; Phoenix DA; Mason AJ
    Sci Rep; 2019 Feb; 9(1):1385. PubMed ID: 30718667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane interactions and pore formation by the antimicrobial peptide protegrin.
    Lazaridis T; He Y; Prieto L
    Biophys J; 2013 Feb; 104(3):633-42. PubMed ID: 23442914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1.
    Bond PJ; Parton DL; Clark JF; Sansom MS
    Biophys J; 2008 Oct; 95(8):3802-15. PubMed ID: 18641064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained molecular dynamics of membrane semitoroidal pore formation in model lipid-peptide systems.
    Ermakova E; Kurbanov R; Zuev Y
    J Mol Graph Model; 2019 Mar; 87():1-10. PubMed ID: 30448729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insilico Alpha-Helical Structural Recognition of Temporin Antimicrobial Peptides and Its Interactions with Middle East Respiratory Syndrome-Coronavirus.
    Marimuthu SK; Nagarajan K; Perumal SK; Palanisamy S; Subbiah L
    Int J Pept Res Ther; 2020; 26(3):1473-1483. PubMed ID: 32206049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interaction of antimicrobial peptides with membranes.
    Travkova OG; Moehwald H; Brezesinski G
    Adv Colloid Interface Sci; 2017 Sep; 247():521-532. PubMed ID: 28606715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.