These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 34681690)
1. Direct and Base Excision Repair-Mediated Regulation of a GC-Rich Müller N; Ponkkonen E; Carell T; Khobta A Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681690 [TBL] [Abstract][Full Text] [Related]
2. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435 [TBL] [Abstract][Full Text] [Related]
3. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. Maiti A; Drohat AC J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836 [TBL] [Abstract][Full Text] [Related]
4. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475 [TBL] [Abstract][Full Text] [Related]
5. Base excision repair of tandem modifications in a methylated CpG dinucleotide. Sassa A; Çağlayan M; Dyrkheeva NS; Beard WA; Wilson SH J Biol Chem; 2014 May; 289(20):13996-4008. PubMed ID: 24695738 [TBL] [Abstract][Full Text] [Related]
6. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. Maiti A; Michelson AZ; Armwood CJ; Lee JK; Drohat AC J Am Chem Soc; 2013 Oct; 135(42):15813-22. PubMed ID: 24063363 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Raiber EA; Beraldi D; Ficz G; Burgess HE; Branco MR; Murat P; Oxley D; Booth MJ; Reik W; Balasubramanian S Genome Biol; 2012 Aug; 13(8):R69. PubMed ID: 22902005 [TBL] [Abstract][Full Text] [Related]
8. Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase. Chang C; Yang Y; Li J; Park SH; Fang GC; Liang C; Cao W DNA Repair (Amst); 2022 Nov; 119():103408. PubMed ID: 36179537 [TBL] [Abstract][Full Text] [Related]
9. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair. Lai Y; Jiang Z; Zhou J; Osemota E; Liu Y DNA Repair (Amst); 2016 Jul; 43():89-97. PubMed ID: 27183823 [TBL] [Abstract][Full Text] [Related]
10. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. Pidugu LS; Dai Q; Malik SS; Pozharski E; Drohat AC J Am Chem Soc; 2019 Nov; 141(47):18851-18861. PubMed ID: 31693361 [TBL] [Abstract][Full Text] [Related]
11. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
12. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. Bellacosa A; Drohat AC DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671 [TBL] [Abstract][Full Text] [Related]
13. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196 [TBL] [Abstract][Full Text] [Related]
14. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase. Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810 [TBL] [Abstract][Full Text] [Related]
15. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cortellino S; Xu J; Sannai M; Moore R; Caretti E; Cigliano A; Le Coz M; Devarajan K; Wessels A; Soprano D; Abramowitz LK; Bartolomei MS; Rambow F; Bassi MR; Bruno T; Fanciulli M; Renner C; Klein-Szanto AJ; Matsumoto Y; Kobi D; Davidson I; Alberti C; Larue L; Bellacosa A Cell; 2011 Jul; 146(1):67-79. PubMed ID: 21722948 [TBL] [Abstract][Full Text] [Related]
16. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. McLaughlin D; Coey CT; Yang WC; Drohat AC; Matunis MJ J Biol Chem; 2016 Apr; 291(17):9014-24. PubMed ID: 26917720 [TBL] [Abstract][Full Text] [Related]
17. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Gavin DP; Chase KA; Sharma RP Neuropharmacology; 2013 Dec; 75():233-45. PubMed ID: 23958448 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of (R)-Configured 2'-Fluorinated mC, hmC, fC, and caC Phosphoramidites and Oligonucleotides. Schröder AS; Kotljarova O; Parsa E; Iwan K; Raddaoui N; Carell T Org Lett; 2016 Sep; 18(17):4368-71. PubMed ID: 27541290 [TBL] [Abstract][Full Text] [Related]
20. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Coey CT; Drohat AC Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]