These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34681699)

  • 21. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.
    Huang S; Cheong LZ; Wang D; Shen C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.
    Hwang TH; Lee YM; Kong BS; Seo JS; Choi JW
    Nano Lett; 2012 Feb; 12(2):802-7. PubMed ID: 22206272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MnO
    Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.
    Kim H; Baek J; Son DK; Ruby Raj M; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45458-45475. PubMed ID: 36191137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.
    Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F
    Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.
    Wu H; Zheng G; Liu N; Carney TJ; Yang Y; Cui Y
    Nano Lett; 2012 Feb; 12(2):904-9. PubMed ID: 22224827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
    Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced graphene oxide-encaged submicron-silicon anode interfacially stabilized by Al
    Tan X; Zhao Z; Na Z; Zhuo R; Zhou F; Wang D; Zhu L; Li Y; Hou S; Cai X
    RSC Adv; 2024 Apr; 14(16):11323-11333. PubMed ID: 38595724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect.
    Zhang Z; Du Y; Li H
    Nanotechnology; 2020 Feb; 31(9):095402. PubMed ID: 31715593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cu and Ni Co-Doped Porous Si Nanowire Networks as High-Performance Anode Materials for Lithium-Ion Batteries.
    Mi C; Luo C; Wang Z; Zhang Y; Yang S; Wang Z
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced-design cross-linked binder enables high-performance silicon-based anodes through in-situ crosslinking based on sodium carboxymethyl cellulose and poly-lysine.
    Sun X; Lin X; Dong F; Shen M; Liu H; Song Z; Jiang J
    Int J Biol Macromol; 2024 Aug; 274(Pt 1):133050. PubMed ID: 38880451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Triple Crosslinked Binder with Hierarchical Stress Dissipation and High Ionic Conductivity for Advanced Silicon Anodes in Lithium-ion Batteries.
    He Y; Zhou F; Zhang Y; Lv T; Chu PK; Huo K
    Small; 2024 Nov; 20(45):e2404556. PubMed ID: 39032001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.
    Magasinski A; Zdyrko B; Kovalenko I; Hertzberg B; Burtovyy R; Huebner CF; Fuller TF; Luzinov I; Yushin G
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3004-10. PubMed ID: 21053920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.