These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34681718)
41. Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein. Cook EC; Creamer TP Proteins; 2020 Dec; 88(12):1607-1619. PubMed ID: 32654182 [TBL] [Abstract][Full Text] [Related]
43. Composition-related structural transition of random peptides: insight into the boundary between intrinsically disordered proteins and folded proteins. Kang WB; He C; Liu ZX; Wang J; Wang W J Biomol Struct Dyn; 2019 May; 37(8):1956-1967. PubMed ID: 29734867 [TBL] [Abstract][Full Text] [Related]
44. Current Challenges and Limitations in the Studies of Intrinsically Disordered Proteins in Neurodegenerative Diseases by Computer Simulations. Akbayrak IY; Caglayan SI; Ozcan Z; Uversky VN; Coskuner-Weber O Curr Alzheimer Res; 2020; 17(9):805-818. PubMed ID: 33167839 [TBL] [Abstract][Full Text] [Related]
45. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Wang W Phys Chem Chem Phys; 2021 Jan; 23(2):777-784. PubMed ID: 33355572 [TBL] [Abstract][Full Text] [Related]
46. Structural Impact of Tau Phosphorylation at Threonine 231. Schwalbe M; Kadavath H; Biernat J; Ozenne V; Blackledge M; Mandelkow E; Zweckstetter M Structure; 2015 Aug; 23(8):1448-1458. PubMed ID: 26165593 [TBL] [Abstract][Full Text] [Related]
47. Binding induced intrinsically disordered protein folding with molecular dynamics simulation. Chen H Adv Exp Med Biol; 2015; 827():111-21. PubMed ID: 25387963 [TBL] [Abstract][Full Text] [Related]
48. Hyperphosphorylation of intrinsically disordered tau protein induces an amyloidogenic shift in its conformational ensemble. Zhu S; Shala A; Bezginov A; Sljoka A; Audette G; Wilson DJ PLoS One; 2015; 10(3):e0120416. PubMed ID: 25767879 [TBL] [Abstract][Full Text] [Related]
49. Significant compaction of H4 histone tail upon charge neutralization by acetylation and its mimics, possible effects on chromatin structure. Shabane PS; Onufriev AV J Mol Biol; 2021 Mar; 433(6):166683. PubMed ID: 33096105 [TBL] [Abstract][Full Text] [Related]
50. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. Karlsson E; Paissoni C; Erkelens AM; Tehranizadeh ZA; Sorgenfrei FA; Andersson E; Ye W; Camilloni C; Jemth P J Biol Chem; 2020 Dec; 295(51):17698-17712. PubMed ID: 33454008 [TBL] [Abstract][Full Text] [Related]
51. New force field on modeling intrinsically disordered proteins. Wang W; Ye W; Jiang C; Luo R; Chen HF Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355 [TBL] [Abstract][Full Text] [Related]
52. Hyperphosphorylation of Human Osteopontin and Its Impact on Structural Dynamics and Molecular Recognition. Mateos B; Holzinger J; Conrad-Billroth C; Platzer G; Żerko S; Sealey-Cardona M; Anrather D; Koźmiński W; Konrat R Biochemistry; 2021 May; 60(17):1347-1355. PubMed ID: 33876640 [TBL] [Abstract][Full Text] [Related]
53. Local Structure and Dynamics of Hydration Water in Intrinsically Disordered Proteins. Rani P; Biswas P J Phys Chem B; 2015 Aug; 119(34):10858-67. PubMed ID: 25871264 [TBL] [Abstract][Full Text] [Related]
54. Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins. Liu H; Song D; Zhang Y; Yang S; Luo R; Chen HF Phys Chem Chem Phys; 2019 Oct; 21(39):21918-21931. PubMed ID: 31552948 [TBL] [Abstract][Full Text] [Related]
55. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions. Cragnell C; Rieloff E; Skepö M J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987 [TBL] [Abstract][Full Text] [Related]
56. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. Cordek DG; Croom-Perez TJ; Hwang J; Hargittai MR; Subba-Reddy CV; Han Q; Lodeiro MF; Ning G; McCrory TS; Arnold JJ; Koc H; Lindenbach BD; Showalter SA; Cameron CE J Biol Chem; 2014 Aug; 289(35):24397-416. PubMed ID: 25031324 [TBL] [Abstract][Full Text] [Related]
57. The entropic force generated by intrinsically disordered segments tunes protein function. Keul ND; Oruganty K; Schaper Bergman ET; Beattie NR; McDonald WE; Kadirvelraj R; Gross ML; Phillips RS; Harvey SC; Wood ZA Nature; 2018 Nov; 563(7732):584-588. PubMed ID: 30420606 [TBL] [Abstract][Full Text] [Related]
58. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642 [TBL] [Abstract][Full Text] [Related]
59. Force field development and simulations of intrinsically disordered proteins. Huang J; MacKerell AD Curr Opin Struct Biol; 2018 Feb; 48():40-48. PubMed ID: 29080468 [TBL] [Abstract][Full Text] [Related]
60. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos. Yuwen T; Xue Y; Skrynnikov NR Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]