These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 34681802)
1. Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations. Jukič M; Janežič D; Bren U Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681802 [TBL] [Abstract][Full Text] [Related]
2. Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach. Molavi Z; Razi S; Mirmotalebisohi SA; Adibi A; Sameni M; Karami F; Niazi V; Niknam Z; Aliashrafi M; Taheri M; Ghafouri-Fard S; Jeibouei S; Mahdian S; Zali H; Ranjbar MM; Yazdani M Biomed Pharmacother; 2021 Jun; 138():111544. PubMed ID: 34311539 [TBL] [Abstract][Full Text] [Related]
3. Identifying non-nucleoside inhibitors of RNA-dependent RNA-polymerase of SARS-CoV-2 through per-residue energy decomposition-based pharmacophore modeling, molecular docking, and molecular dynamics simulation. Aziz S; Waqas M; Mohanta TK; Halim SA; Iqbal A; Ali A; Khalid A; Abdalla AN; Khan A; Al-Harrasi A J Infect Public Health; 2023 Apr; 16(4):501-519. PubMed ID: 36801630 [TBL] [Abstract][Full Text] [Related]
4. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. Zhu W; Chen CZ; Gorshkov K; Xu M; Lo DC; Zheng W SLAS Discov; 2020 Dec; 25(10):1141-1151. PubMed ID: 32660307 [TBL] [Abstract][Full Text] [Related]
5. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. Zhang L; Zhou R J Phys Chem B; 2020 Aug; 124(32):6955-6962. PubMed ID: 32521159 [TBL] [Abstract][Full Text] [Related]
6. Revealing the Inhibition Mechanism of RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2 by Remdesivir and Nucleotide Analogues: A Molecular Dynamics Simulation Study. Wakchaure PD; Ghosh S; Ganguly B J Phys Chem B; 2020 Nov; 124(47):10641-10652. PubMed ID: 33190493 [TBL] [Abstract][Full Text] [Related]
7. Screening of Severe Acute Respiratory Syndrome Coronavirus 2 RNA-Dependent RNA Polymerase Inhibitors Using Computational Approach. Dhankhar P; Dalal V; Kumar V J Comput Biol; 2021 Dec; 28(12):1228-1247. PubMed ID: 34847746 [TBL] [Abstract][Full Text] [Related]
8. RNA-dependent RNA polymerase of SARS-CoV-2 as a therapeutic target. Wang Y; Anirudhan V; Du R; Cui Q; Rong L J Med Virol; 2021 Jan; 93(1):300-310. PubMed ID: 32633831 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of potential anti-RNA-dependent RNA polymerase (RdRP) drugs against the newly emerged model of COVID-19 RdRP using computational methods. Poustforoosh A; Hashemipour H; Tüzün B; Pardakhty A; Mehrabani M; Nematollahi MH Biophys Chem; 2021 May; 272():106564. PubMed ID: 33711743 [TBL] [Abstract][Full Text] [Related]
10. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Lung J; Lin YS; Yang YH; Chou YL; Shu LH; Cheng YC; Liu HT; Wu CY J Med Virol; 2020 Jun; 92(6):693-697. PubMed ID: 32167173 [TBL] [Abstract][Full Text] [Related]
11. Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity. Tsuji M Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232311 [TBL] [Abstract][Full Text] [Related]
12. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach. Gupta Y; Kumar S; Zak SE; Jones KA; Upadhyay C; Sharma N; Azizi SA; Kathayat RS; Poonam ; Herbert AS; Durvasula R; Dickinson BC; Dye JM; Rathi B; Kempaiah P Bioorg Med Chem; 2021 Oct; 47():116393. PubMed ID: 34509862 [TBL] [Abstract][Full Text] [Related]
13. In silico identification of novel SARS-COV-2 2'-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches. El Hassab MA; Ibrahim TM; Al-Rashood ST; Alharbi A; Eskandrani RO; Eldehna WM J Enzyme Inhib Med Chem; 2021 Dec; 36(1):727-736. PubMed ID: 33685335 [TBL] [Abstract][Full Text] [Related]
14. Investigating the potential of natural compounds as novel inhibitors of SARS-CoV-2 RdRP using computational approaches. Bagabir SA Biotechnol Genet Eng Rev; 2024 Nov; 40(3):1535-1555. PubMed ID: 36994810 [TBL] [Abstract][Full Text] [Related]
15. Cyanorona-20: The first potent anti-SARS-CoV-2 agent. Rabie AM Int Immunopharmacol; 2021 Sep; 98():107831. PubMed ID: 34247016 [TBL] [Abstract][Full Text] [Related]
16. Denovo designing, retro-combinatorial synthesis, and molecular dynamics analysis identify novel antiviral VTRM1.1 against RNA-dependent RNA polymerase of SARS CoV2 virus. Tiwari V Int J Biol Macromol; 2021 Feb; 171():358-365. PubMed ID: 33421473 [TBL] [Abstract][Full Text] [Related]
17. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. Koulgi S; Jani V; Uppuladinne V N M; Sonavane U; Joshi R PLoS One; 2021; 16(5):e0251801. PubMed ID: 33984041 [TBL] [Abstract][Full Text] [Related]
18. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Elfiky AA Life Sci; 2020 May; 248():117477. PubMed ID: 32119961 [TBL] [Abstract][Full Text] [Related]
19. Identifying Small-Molecule Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase by Establishing a Fluorometric Assay. Bai X; Sun H; Wu S; Li Y; Wang L; Hong B Front Immunol; 2022; 13():844749. PubMed ID: 35464436 [TBL] [Abstract][Full Text] [Related]
20. Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study. Rabie AM; Eltayb WA Mol Biotechnol; 2024 Apr; 66(4):592-611. PubMed ID: 36690820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]