These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34681804)
1. Human Serum Extracellular Vesicle Proteomic Profile Depends on the Enrichment Method Employed. Azkargorta M; Iloro I; Escobes I; Cabrera D; Falcon-Perez JM; Elortza F; Royo F Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681804 [TBL] [Abstract][Full Text] [Related]
2. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Karimi N; Cvjetkovic A; Jang SC; Crescitelli R; Hosseinpour Feizi MA; Nieuwland R; Lötvall J; Lässer C Cell Mol Life Sci; 2018 Aug; 75(15):2873-2886. PubMed ID: 29441425 [TBL] [Abstract][Full Text] [Related]
3. A novel method of high-purity extracellular vesicle enrichment from microliter-scale human serum for proteomic analysis. Ji X; Huang S; Zhang J; Bruce TF; Tan Z; Wang D; Zhu J; Marcus RK; Lubman DM Electrophoresis; 2021 Feb; 42(3):245-256. PubMed ID: 33169421 [TBL] [Abstract][Full Text] [Related]
4. Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods. Cao F; Gao Y; Chu Q; Wu Q; Zhao L; Lan T; Zhao L Electrophoresis; 2019 Dec; 40(23-24):3092-3098. PubMed ID: 31621929 [TBL] [Abstract][Full Text] [Related]
5. Urinary extracellular vesicles as a source of protein-based biomarkers in feline chronic kidney disease and hypertension. Lawson JS; Syme HM; Antrobus PR; Karttunen JM; Stewart SE; Karet Frankl FE; Williams TL J Small Anim Pract; 2023 Jan; 64(1):3-11. PubMed ID: 35799320 [TBL] [Abstract][Full Text] [Related]
6. Isolation of Small Extracellular Vesicles From Human Serum Using a Combination of Ultracentrifugation With Polymer-Based Precipitation. Ryu KJ; Lee JY; Park C; Cho D; Kim SJ Ann Lab Med; 2020 May; 40(3):253-258. PubMed ID: 31858766 [TBL] [Abstract][Full Text] [Related]
7. Protocol for Plasma Extracellular Vesicle and Particle Isolation and Mass Spectrometry-Based Proteomic Identification. Kenari AN; Bojmar L; Heissel S; Molina H; Lyden D; Hoshino A Methods Mol Biol; 2023; 2628():291-300. PubMed ID: 36781793 [TBL] [Abstract][Full Text] [Related]
8. Isolation of Circulating Extracellular Vesicles by High-Performance Size-Exclusion Chromatography. Takov K; Teng IJ; Mayr M Methods Mol Biol; 2022; 2504():31-40. PubMed ID: 35467277 [TBL] [Abstract][Full Text] [Related]
9. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling. Kreimer S; Ivanov AR Methods Mol Biol; 2017; 1660():295-302. PubMed ID: 28828666 [TBL] [Abstract][Full Text] [Related]
10. Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation. Li M; Lou D; Chen J; Shi K; Wang Y; Zhu Q; Liu F; Zhang Y Anal Bioanal Chem; 2021 Jan; 413(2):365-375. PubMed ID: 33159572 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Extracellular Vesicles Purity Using Proteomic Standards. Wang T; Anderson KW; Turko IV Anal Chem; 2017 Oct; 89(20):11070-11075. PubMed ID: 28949504 [TBL] [Abstract][Full Text] [Related]
12. Multiple-Cycle Polymeric Extracellular Vesicle Precipitation and Its Evaluation by Targeted Mass Spectrometry. Park J; Go EB; Oh JS; Lee JK; Lee SY Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919183 [TBL] [Abstract][Full Text] [Related]
13. Proteomic Toolbox To Standardize the Separation of Extracellular Vesicles and Lipoprotein Particles. Wang T; Turko IV J Proteome Res; 2018 Sep; 17(9):3104-3113. PubMed ID: 30080417 [TBL] [Abstract][Full Text] [Related]
14. Assessment of separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal fluids. Muraoka S; Lin W; Chen M; Hersh SW; Emili A; Xia W; Ikezu T Methods; 2020 May; 177():35-49. PubMed ID: 32035230 [TBL] [Abstract][Full Text] [Related]
15. Quality and efficiency assessment of five extracellular vesicle isolation methods using the resistive pulse sensing strategy. Yang M; Guo J; Fang L; Chen Z; Liu Y; Sun Z; Pang X; Peng Y Anal Methods; 2024 Aug; 16(32):5536-5544. PubMed ID: 39046449 [TBL] [Abstract][Full Text] [Related]
16. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Coughlan C; Bruce KD; Burgy O; Boyd TD; Michel CR; Garcia-Perez JE; Adame V; Anton P; Bettcher BM; Chial HJ; Königshoff M; Hsieh EWY; Graner M; Potter H Curr Protoc Cell Biol; 2020 Sep; 88(1):e110. PubMed ID: 32633898 [TBL] [Abstract][Full Text] [Related]
17. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Tong M; Kleffmann T; Pradhan S; Johansson CL; DeSousa J; Stone PR; James JL; Chen Q; Chamley LW Hum Reprod; 2016 Apr; 31(4):687-99. PubMed ID: 26839151 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Hydrostatic Filtration Dialysis with Ultracentrifugation Methods for the Identification and Proteomic Profiling of Urinary Extracellular Vesicles. Chen Y; Hong G; Wu F; Sheng J; Zou Z; Xiong C; Zhang Y; Jin D; Tang H; Wang X; Zou H Clin Lab; 2019 Apr; 65(4):. PubMed ID: 30969091 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Enrichment of Plasma Extracellular Vesicles and Glycoproteome for Studying Disease Biomarkers. Adav SS; Sze SK Methods Mol Biol; 2017; 1619():193-201. PubMed ID: 28674887 [TBL] [Abstract][Full Text] [Related]