BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34681959)

  • 41. Redox-Responsive Phase-Separating Peptide as a Universal Delivery Vehicle for CRISPR/Cas9 Genome Editing Machinery.
    Sun Y; Xu X; Chen L; Chew WL; Ping Y; Miserez A
    ACS Nano; 2023 Sep; 17(17):16597-16606. PubMed ID: 37584415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid.
    Tang Q; Liu J; Jiang Y; Zhang M; Mao L; Wang M
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46585-46590. PubMed ID: 31763806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.
    Wang HX; Song Z; Lao YH; Xu X; Gong J; Cheng D; Chakraborty S; Park JS; Li M; Huang D; Yin L; Cheng J; Leong KW
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4903-4908. PubMed ID: 29686087
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Alkhaleefah FK; Rahmani AH; Khan AA
    Cancer Commun (Lond); 2022 Dec; 42(12):1257-1287. PubMed ID: 36209487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intracellular Delivery of mRNA for Cell-Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles.
    Ma T; Chen X; Wang M
    Chembiochem; 2023 May; 24(9):e202200801. PubMed ID: 36780174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virus-Induced Gene Editing and Its Applications in Plants.
    Zhang C; Liu S; Li X; Zhang R; Li J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications.
    Zheng Q; Wang W; Zhou Y; Mo J; Chang X; Zha Z; Zha L
    Biomater Sci; 2023 Aug; 11(16):5361-5389. PubMed ID: 37381725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems.
    Bae T; Hur JW; Kim D; Hur JK
    Genes Genomics; 2019 Aug; 41(8):871-877. PubMed ID: 31119685
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies.
    Singh D
    AAPS PharmSciTech; 2024 Jun; 25(5):129. PubMed ID: 38844700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 delivery by NIR-responsive biomimetic nanoparticles for targeted HBV therapy.
    Wang D; Chen L; Li C; Long Q; Yang Q; Huang A; Tang H
    J Nanobiotechnology; 2022 Jan; 20(1):27. PubMed ID: 34991617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-clinical non-viral vectors exploited for
    Rouatbi N; McGlynn T; Al-Jamal KT
    Biomater Sci; 2022 Jun; 10(13):3410-3432. PubMed ID: 35604372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing.
    Chang J; Chen X; Glass Z; Gao F; Mao L; Wang M; Xu Q
    Acc Chem Res; 2019 Mar; 52(3):665-675. PubMed ID: 30586281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-viral delivery of genome-editing nucleases for gene therapy.
    Wang M; Glass ZA; Xu Q
    Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles.
    Mazurov D; Ramadan L; Kruglova N
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing.
    Aquino-Jarquin G
    Mol Genet Metab; 2021; 134(1-2):77-86. PubMed ID: 34391646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.