BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34681959)

  • 61. Recent Advances in CRISPR/Cas9 Delivery Strategies.
    Yip BH
    Biomolecules; 2020 May; 10(6):. PubMed ID: 32486234
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors.
    Nie D; Guo T; Yue M; Li W; Zong X; Zhu Y; Huang J; Lin M
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139078
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges.
    Luther DC; Lee YW; Nagaraj H; Scaletti F; Rotello VM
    Expert Opin Drug Deliv; 2018 Sep; 15(9):905-913. PubMed ID: 30169977
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing.
    Fajrial AK; He QQ; Wirusanti NI; Slansky JE; Ding X
    Theranostics; 2020; 10(12):5532-5549. PubMed ID: 32373229
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing.
    Naeem M; Majeed S; Hoque MZ; Ahmad I
    Cells; 2020 Jul; 9(7):. PubMed ID: 32630835
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonviral Nanoparticles for CRISPR-Based Genome Editing: Is It Just a Simple Adaption of What Have Been Developed for Nucleic Acid Delivery?
    Qiu M; Glass Z; Xu Q
    Biomacromolecules; 2019 Sep; 20(9):3333-3339. PubMed ID: 31342740
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biologically produced and metal-organic framework delivered dual-cut CRISPR/Cas9 system for efficient gene editing and sensitized cancer therapy.
    Yu J; Tang M; Zhou Z; Wei Z; Wan F; Hou S; Li Q; Li Y; Tian L
    Acta Biomater; 2024 Apr; 178():296-306. PubMed ID: 38417646
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Progress of delivery methods for CRISPR-Cas9.
    Yang W; Yan J; Zhuang P; Ding T; Chen Y; Zhang Y; Zhang H; Cui W
    Expert Opin Drug Deliv; 2022 Aug; 19(8):913-926. PubMed ID: 35818792
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing.
    Zhang Z; Wan T; Chen Y; Chen Y; Sun H; Cao T; Songyang Z; Tang G; Wu C; Ping Y; Xu FJ; Huang J
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800068. PubMed ID: 29708298
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA
    Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Co-delivery of Sorafenib and CRISPR/Cas9 Based on Targeted Core-Shell Hollow Mesoporous Organosilica Nanoparticles for Synergistic HCC Therapy.
    Zhang BC; Luo BY; Zou JJ; Wu PY; Jiang JL; Le JQ; Zhao RR; Chen L; Shao JW
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57362-57372. PubMed ID: 33301289
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced Cytosolic Delivery and Release of CRISPR/Cas9 by Black Phosphorus Nanosheets for Genome Editing.
    Zhou W; Cui H; Ying L; Yu XF
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10268-10272. PubMed ID: 29939484
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing.
    Chae SY; Jeong E; Kang S; Yim Y; Kim JS; Min DH
    J Control Release; 2022 May; 345():108-119. PubMed ID: 35247491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.