These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34682232)

  • 1. Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides.
    Farkas B; Vojtková H; Bujdoš M; Kolenčík M; Šebesta M; Matulová M; Duborská E; Danko M; Kim H; Kučová K; Kisová Z; Matúš P; Urík M
    J Fungi (Basel); 2021 Sep; 7(10):. PubMed ID: 34682232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus
    Farkas B; Bujdoš M; Polák F; Matulová M; Cesnek M; Duborská E; Zvěřina O; Kim H; Danko M; Kisová Z; Matúš P; Urík M
    J Fungi (Basel); 2021 Sep; 7(10):. PubMed ID: 34682230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate.
    Urík M; Polák F; Bujdoš M; Miglierini MB; Milová-Žiaková B; Farkas B; Goneková Z; Vojtková H; Matúš P
    Sci Total Environ; 2019 May; 664():683-689. PubMed ID: 30763848
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Farkas B; Kolenčík M; Hain M; Dobročka E; Kratošová G; Bujdoš M; Feng H; Deng Y; Yu Q; Illa R; Sunil BR; Kim H; Matúš P; Urík M
    J Fungi (Basel); 2020 Nov; 6(4):. PubMed ID: 33182297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains' acidic and chelating exometabolites.
    Polák F; Urík M; Bujdoš M; Uhlík P; Matúš P
    J Inorg Biochem; 2018 Apr; 181():162-168. PubMed ID: 28927705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of High Selenite and Selenate Concentrations on Ferric Oxyhydroxides Transformation under Alkaline Conditions.
    Matulová M; Bujdoš M; Miglierini MB; Cesnek M; Duborská E; Mosnáčková K; Vojtková H; Kmječ T; Dekan J; Matúš P; Urík M
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of
    Duborská E; Szabó K; Bujdoš M; Vojtková H; Littera P; Dobročka E; Kim H; Urík M
    Microorganisms; 2020 Oct; 8(11):. PubMed ID: 33121130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fungal-Mediated Cryptic Selenium Cycle Linked to Manganese Biogeochemistry.
    Rosenfeld CE; Sabuda MC; Hinkle MAG; James BR; Santelli CM
    Environ Sci Technol; 2020 Mar; 54(6):3570-3580. PubMed ID: 32083848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species.
    Urík M; Farkas B; Miglierini MB; Bujdoš M; Mitróová Z; Kim H; Matúš P
    J Hazard Mater; 2021 May; 409():124938. PubMed ID: 33450513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger.
    Ferrier J; Yang Y; Csetenyi L; Gadd GM
    Environ Microbiol; 2019 May; 21(5):1821-1832. PubMed ID: 30884070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and speciation of selenium in boreal forest soil.
    Söderlund M; Virkanen J; Holgersson S; Lehto J
    J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic Differences of Uptake and Translocation of Exogenous Selenium by Different Crops and Its Mechanism].
    Peng Q; Li Z; Liang DL; Wang MK; Guo L
    Huan Jing Ke Xue; 2017 Apr; 38(4):1667-1674. PubMed ID: 29965172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries.
    Lobos A; Harwood VJ; Scott KM; Cunningham JA
    J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(ii) hydroxide and green rust.
    Börsig N; Scheinost AC; Shaw S; Schild D; Neumann T
    Dalton Trans; 2018 Aug; 47(32):11002-11015. PubMed ID: 30022201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.).
    Ali F; Peng Q; Wang D; Cui Z; Huang J; Fu D; Liang D
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8315-8325. PubMed ID: 28161863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monazite transformation into Ce- and La-containing oxalates by Aspergillus niger.
    Kang X; Csetenyi L; Gadd GM
    Environ Microbiol; 2020 Apr; 22(4):1635-1648. PubMed ID: 32114711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Geomycology of Elemental Cycling and Transformations in the Environment.
    Gadd GM
    Microbiol Spectr; 2017 Jan; 5(1):. PubMed ID: 28128071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation.
    Loffredo N; Mounier S; Thiry Y; Coppin F
    J Environ Radioact; 2011 Sep; 102(9):843-51. PubMed ID: 21683486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce.
    do Nascimento da Silva E; Cadore S
    J Food Sci; 2019 Oct; 84(10):2840-2846. PubMed ID: 31517998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.