BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34682264)

  • 1. P-Type ATPase Apt1 of the Fungal Pathogen
    Stanchev LD; Rizzo J; Peschel R; Pazurek LA; Bredegaard L; Veit S; Laerbusch S; Rodrigues ML; López-Marqués RL; Günther Pomorski T
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Analysis of the P-Type ATPases Apt2-4 from
    Veit S; Laerbusch S; López-Marqués RL; Günther Pomorski T
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans.
    Hu G; Caza M; Bakkeren E; Kretschmer M; Bairwa G; Reiner E; Kronstad J
    Cell Microbiol; 2017 Jun; 19(6):. PubMed ID: 28061020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans.
    Rizzo J; Colombo AC; Zamith-Miranda D; Silva VKA; Allegood JC; Casadevall A; Del Poeta M; Nosanchuk JD; Kronstad JW; Rodrigues ML
    Biochim Biophys Acta Mol Cell Res; 2018 Mar; 1865(3):532-541. PubMed ID: 29291962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Antifungal Peptides against Cryptococcus neoformans; Leveraging Knowledge about the
    Tancer RJ; Wang Y; Pawar S; Xue C; Wiedman GR
    Microbiol Spectr; 2022 Apr; 10(2):e0043922. PubMed ID: 35377230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of lipid transport by the Drs2-Cdc50 flippase upon truncation of its terminal regions.
    Herrera SA; Justesen BH; Dieudonné T; Montigny C; Nissen P; Lenoir G; Günther Pomorski T
    Protein Sci; 2023 Dec; 33(3):e4855. PubMed ID: 38063271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport mechanism of P4 ATPase lipid flippases.
    López-Marqués RL; Gourdon P; Günther Pomorski T; Palmgren M
    Biochem J; 2020 Oct; 477(19):3769-3790. PubMed ID: 33045059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P4-ATPase subunit Cdc50 plays a role in yeast budding and cell wall integrity in Candida glabrata.
    Chen KZ; Wang LL; Liu JY; Zhao JT; Huang SJ; Xiang MJ
    BMC Microbiol; 2023 Apr; 23(1):99. PubMed ID: 37046215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit.
    Lamy A; Macarini-Bruzaferro E; Dieudonné T; Perálvarez-Marín A; Lenoir G; Montigny C; le Maire M; Vázquez-Ibar JL
    Emerg Microbes Infect; 2021 Dec; 10(1):132-147. PubMed ID: 33372863
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Shor E; Wang Y; Perlin DS; Xue C
    Microb Cell; 2016 Aug; 3(8):358-360. PubMed ID: 28357373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid-flipping activity of P4-ATPase drives membrane curvature.
    Takada N; Naito T; Inoue T; Nakayama K; Takatsu H; Shin HW
    EMBO J; 2018 May; 37(9):. PubMed ID: 29599178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mechanosensitive Channel Governs Lipid Flippase-Mediated Echinocandin Resistance in Cryptococcus neoformans.
    Cao C; Wang Y; Husain S; Soteropoulos P; Xue C
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P4-ATPases: lipid flippases in cell membranes.
    Lopez-Marques RL; Theorin L; Palmgren MG; Pomorski TG
    Pflugers Arch; 2014 Jul; 466(7):1227-40. PubMed ID: 24077738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner.
    Takatsu H; Baba K; Shima T; Umino H; Kato U; Umeda M; Nakayama K; Shin HW
    J Biol Chem; 2011 Nov; 286(44):38159-38167. PubMed ID: 21914794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas.
    Andersen JP; Vestergaard AL; Mikkelsen SA; Mogensen LS; Chalat M; Molday RS
    Front Physiol; 2016; 7():275. PubMed ID: 27458383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Based Lipid Flippase Assay Employing Fluorescent Lipid Derivatives.
    Jensen MS; Costa S; Günther-Pomorski T; López-Marqués RL
    Methods Mol Biol; 2016; 1377():371-82. PubMed ID: 26695048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p phospholipid flippase.
    Takahashi Y; Fujimura-Kamada K; Kondo S; Tanaka K
    J Biochem; 2011 Apr; 149(4):423-32. PubMed ID: 21212072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases.
    Shin HW; Takatsu H
    Chem Pharm Bull (Tokyo); 2022; 70(8):524-532. PubMed ID: 35908917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.