These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 34683236)

  • 21. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels.
    Crump MR; Gong AT; Chai D; Bidinger SL; Pavinatto FJ; Reihsen TE; Sweet RM; MacKenzie JD
    Nanotechnology; 2019 Sep; 30(36):364002. PubMed ID: 31121565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink.
    Wu X; Wang S; Luo Z; Lu J; Lin K; Xie H; Wang Y; Li JZ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Insights into Inkjet Printed Silver Nanowires Flexible Transparent Conductive Films.
    Wang Y; Wu X; Wang K; Lin K; Xie H; Zhang X; Li J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions.
    Denneulin A; Bras J; Blayo A; Khelifi B; Roussel-Dherbey F; Neuman C
    Nanotechnology; 2009 Sep; 20(38):385701. PubMed ID: 19713577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.
    Christensen K; Davis B; Jin Y; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research of a Novel 3D Printed Strain Gauge Type Force Sensor.
    Liu M; Zhang Q; Shao Y; Liu C; Zhao Y
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.
    Jiang J; Bao B; Li M; Sun J; Zhang C; Li Y; Li F; Yao X; Song Y
    Adv Mater; 2016 Feb; 28(7):1420-6. PubMed ID: 26643356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.
    Li L; Pan L; Ma Z; Yan K; Cheng W; Shi Y; Yu G
    Nano Lett; 2018 Jun; 18(6):3322-3327. PubMed ID: 29419302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Atlas for the Inkjet Printing of Large-Area Tactile Sensors.
    Baldini G; Albini A; Maiolino P; Cannata G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review of Recent Inkjet-Printed Capacitive Tactile Sensors.
    Salim A; Lim S
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29125584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Performance Stability of Iridium Oxide-Based pH Sensors Fabricated on Rough Inkjet-Printed Platinum.
    Zea M; Moya A; Fritsch M; Ramon E; Villa R; Gabriel G
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15160-15169. PubMed ID: 30848584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Stretchable Circuits on Polydimethylsiloxane (PDMS) Pre-Stretched Substrates by Inkjet Printing Silver Nanoparticles.
    Abu-Khalaf JM; Al-Ghussain L; Al-Halhouli A
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coaxial Printing of Silicone Elastomer Composite Fibers for Stretchable and Wearable Piezoresistive Sensors.
    Tang Z; Jia S; Shi X; Li B; Zhou C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30979015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.
    Haque RI; Ogam E; Loussert C; Benaben P; Boddaert X
    Sensors (Basel); 2015 Oct; 15(10):26018-38. PubMed ID: 26473878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology.
    Al-Halhouli A; Al-Ghussain L; El Bouri S; Liu H; Zheng D
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing.
    Borghetti M; Serpelloni M; Sardini E
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity enhancement of flexible gas sensors via conversion of inkjet-printed silver electrodes into porous gold counterparts.
    Fang Y; Akbari M; Hester JGD; Sydänheimo L; Ukkonen L; Tentzeris MM
    Sci Rep; 2017 Aug; 7(1):8988. PubMed ID: 28827611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C.
    Mandelli JS; Koepp J; Hama A; Sanaur S; Rae GA; Rambo CR
    Biomed Microdevices; 2021 Jan; 23(1):2. PubMed ID: 33386434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.