BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34683269)

  • 1. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment.
    Yang L; Ye T; Zhao X; Hu T; Wei Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of superparamagnetic particles through ratcheted Brownian motion and periodically switching magnetic fields.
    Liu F; Jiang L; Tan HM; Yadav A; Biswas P; van der Maarel JR; Nijhuis CA; van Kan JA
    Biomicrofluidics; 2016 Nov; 10(6):064105. PubMed ID: 27917252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High yield fabrication of multilayer polydimethylsiloxane [corrected] devices with freestanding micropillar arrays.
    Gregory CW; Sellgren KL; Gilchrist KH; Grego S
    Biomicrofluidics; 2013; 7(5):56503. PubMed ID: 24396532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic Separation of Particles Using Microfluidic Chip with Composite Three-Dimensional Electrode.
    Chen L; Liu X; Zheng X; Zhang X; Yang J; Tian T; Liao Y
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells.
    Yan S; Zhang X; Dai X; Feng X; Du W; Liu BF
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33457-33463. PubMed ID: 27960420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Size-controlled Poly (ethylene Glycol) Diacrylate Droplets via Semi-3-Dimensional Flow Focusing Microfluidic Devices.
    Wu Y; Qian X; Mi S; Zhang M; Sun S; Wang X
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30035768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified 3D hydrodynamic flow focusing for lab-on-chip single particle study.
    Storti F; Bonfadini S; Criante L
    Sci Rep; 2023 Sep; 13(1):14671. PubMed ID: 37673905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.
    Çetin B; Özer MB; Çağatay E; Büyükkoçak S
    Biomicrofluidics; 2016 Jan; 10(1):014112. PubMed ID: 26865905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling.
    Liu Z; Qin S; Chen X; Chen D; Wang F
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Device for Continuous-Flow Magnetically Controlled Capture and Isolation of Microparticles.
    Zhou Y; Wang Y; Lin Q
    J Microelectromech Syst; 2010 Aug; 19(4):743-751. PubMed ID: 24511214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.
    Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.