These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34683382)

  • 1. Metabolic Footprints of
    Barrera-Galicia GC; Peniche-Pavía HA; Peña-Cabriales JJ; Covarrubias SA; Vera-Núñez JA; Délano-Frier JP
    Microorganisms; 2021 Sep; 9(10):. PubMed ID: 34683382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole Genome Analyses Suggests that
    Estrada-de Los Santos P; Palmer M; Chávez-Ramírez B; Beukes C; Steenkamp ET; Briscoe L; Khan N; Maluk M; Lafos M; Humm E; Arrabit M; Crook M; Gross E; Simon MF; Dos Reis Junior FB; Whitman WB; Shapiro N; Poole PS; Hirsch AM; Venter SN; James EK
    Genes (Basel); 2018 Aug; 9(8):. PubMed ID: 30071618
    [No Abstract]   [Full Text] [Related]  

  • 3. Comprehensive genomic analysis of Burkholderia arboris PN-1 reveals its biocontrol potential against Fusarium solani-induced root rot in Panax notoginseng.
    Yang Y; Wang H; Tu J; Li Y; Guan H
    Curr Genet; 2024 Mar; 70(1):4. PubMed ID: 38555312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations.
    Bevivino A; Peggion V; Chiarini L; Tabacchioni S; Cantale C; Dalmastri C
    Res Microbiol; 2005 Dec; 156(10):974-83. PubMed ID: 16085398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides.
    Figueroa-López AM; Cordero-Ramírez JD; Martínez-Álvarez JC; López-Meyer M; Lizárraga-Sánchez GJ; Félix-Gastélum R; Castro-Martínez C; Maldonado-Mendoza IE
    Springerplus; 2016; 5():330. PubMed ID: 27066355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth.
    Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA
    Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants.
    Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE
    World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging.
    Araújo FD; Araújo WL; Eberlin MN
    J Am Soc Mass Spectrom; 2017 May; 28(5):901-907. PubMed ID: 28194740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling.
    Tagele SB; Kim SW; Lee HG; Kim HS; Lee YS
    Microbiol Res; 2018 Sep; 214():8-18. PubMed ID: 30031484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.
    Liu J; Wang X; Zhang T; Li X
    Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia.
    Su X; Shi Y; Li R; Lu ZN; Zou X; Wu JX; Han ZG
    BMC Microbiol; 2019 Feb; 19(1):36. PubMed ID: 30744555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Diversity of Type 3 Secretion System in
    Wallner A; Moulin L; Busset N; Rimbault I; Béna G
    Front Microbiol; 2021; 12():761215. PubMed ID: 34745070
    [No Abstract]   [Full Text] [Related]  

  • 13. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of
    Mullins AJ; Mahenthiralingam E
    Front Microbiol; 2021; 12():726847. PubMed ID: 34650530
    [No Abstract]   [Full Text] [Related]  

  • 14. Revealing the role of Plant Growth Promoting Rhizobacteria in suppressive soils against
    Nisrina L; Effendi Y; Pancoro A
    Heliyon; 2021 Aug; 7(8):e07636. PubMed ID: 34401567
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03.
    Morales-Ruiz E; Priego-Rivera R; Figueroa-López AM; Cazares-Álvarez JE; Maldonado-Mendoza IE
    FEMS Microbiol Lett; 2021 Feb; 368(2):. PubMed ID: 33351136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of
    Xu Z; Wang M; Du J; Huang T; Liu J; Dong T; Chen Y
    Front Microbiol; 2020; 11():605152. PubMed ID: 33362750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum.
    Lievens B; Claes L; Vakalounakis DJ; Vanachter AC; Thomma BP
    Environ Microbiol; 2007 Sep; 9(9):2145-61. PubMed ID: 17686014
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Depoorter E; De Canck E; Coenye T; Vandamme P
    Antibiotics (Basel); 2021 Feb; 10(2):. PubMed ID: 33540653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by paenibacillus strains isolated from soil.
    Xu SJ; Kim BS
    Mycobiology; 2014 Jun; 42(2):158-66. PubMed ID: 25071385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. His-Ala-Phe-Lys peptide from
    Zhu H; Xu C; Chen Y; Liang Y
    Front Microbiol; 2022; 13():1071530. PubMed ID: 36560956
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.