BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34683634)

  • 1. In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage.
    Yang B; Liu Y; Ye W; Wang Q; Yang X; Yang D
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage.
    Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Thermal Properties of Propyl Palmitate-Based Phase Change Composites with Enhanced Thermal Conductivity for Thermal Energy Storage.
    Yin L; Zhao M; Yang R
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Thermophysical and Mechanical Properties in LiNaSO
    Taeño M; Adnan A; Luengo C; Serrano Á; Dauvergne JL; Crocomo P; Huerta A; Doppiu S; Palomo Del Barrio E
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery.
    Gong S; Li X; Sheng M; Liu S; Zheng Y; Wu H; Lu X; Qu J
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47174-47184. PubMed ID: 34558896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite materials for thermal energy storage: enhancing performance through microstructures.
    Ge Z; Ye F; Ding Y
    ChemSusChem; 2014 May; 7(5):1318-25. PubMed ID: 24591286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications.
    Mitran RA; Ioniţǎ S; Lincu D; Berger D; Matei C
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33466451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials.
    Al-Ahmed A; Sarı A; Mazumder MAJ; Hekimoğlu G; Al-Sulaiman FA; Inamuddin
    Sci Rep; 2020 Jun; 10(1):9168. PubMed ID: 32513930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of Molten Carbonates with Dispersed Solid Oxide from Differential Scanning Calorimetry.
    Kandhasamy S; Støre A; Haarberg GM; Kjelstrup S; Solheim A
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31071911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly thermal conductive shape-stabilized composite phase change materials based on boron nitride and expanded graphite for solar thermal applications.
    Huang D; Ma G; Yu Z; Lv P; Zhou Q; Liu Q; Peng C; Xiong F; Huang Y
    RSC Adv; 2023 Apr; 13(19):13252-13262. PubMed ID: 37124017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and Thermal Performance of Fatty Acid Binary Eutectic Mixture/Expanded Graphite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage.
    Zhou D; Xiao S; Xiao X
    ACS Omega; 2023 Mar; 8(9):8596-8604. PubMed ID: 36910934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Thermal-to-Flexible Phase Change Materials Based on Cellulose/Modified Graphene Composites for Thermal Management of Solar Energy.
    Qian Y; Han N; Zhang Z; Cao R; Tan L; Li W; Zhang X
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45832-45843. PubMed ID: 31738041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Binary Salt Mixture LiCl-LiOH for Thermal Energy Storage.
    Hassan N; Minakshi M; Ruprecht J; Liew WYH; Jiang ZT
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
    Anagnostopoulos A; Navarro ME; Stefanidou M; Ding Y; Gaidajis G
    J Hazard Mater; 2021 Jul; 413():125407. PubMed ID: 33930958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Three-Dimensional Network Structure in Polyethylene-EPDM-Based Phase Change Materials by Carbon Nanotube with Enhanced Thermal Conductivity, Mechanical Property and Photo-Thermal Conversion Performance.
    He Y; Chen Y; Liu C; Huang L; Huang C; Lu J; Huang H
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of Nanocomposites of a Phase Change Material Formed by the Dispersion of MWCNT/TiO
    AlOtaibi M; Alsuhybani M; Khayyat M; AlOtaibi B
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler.
    Lavi A; Ohayon-Lavi A; Leibovitch Y; Hayun S; Ruse E; Regev O
    Glob Chall; 2023 Sep; 7(9):2300053. PubMed ID: 37745830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Regulation of Flexible Composite Solid-Solid Phase Change Materials with Controllable Isotropic Thermal Conductivity for Thermal Energy Storage.
    Tian C; Yang Y; Liu Q; Bai Y; Zhao F; Huang L; Yang N; Cai X; Kong W
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13165-13175. PubMed ID: 36877699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Reliability of Caprylic Acid-Stearyl Alcohol Binary Mixture as Phase Change Material for a Cold Energy Storage System.
    Ayaz H; Chinnasamy V; Cho H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.